§@ªÌ¡G ³¯¬L§»
¸q¦u¤j¾Ç ¹q¤l¤uµ{¨t
¬ÛÃö¸ê®Æ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
²Ä¤G³¹ °T¸¹»PµûÃÐSignal and spectrum
²Ä¤T¸` Fourier representations for four
class of signals
¤@¡B Periodic Signal à
Fourier Series (FS)
¤G¡B ¤T¨¤´I§Q¸¯Å¼Æ(Trigonometric
Fourier series)
¤T¡B »~®t¤è§¡È(§¡¤è»~®tÈ) MSE
of Representation
¤¡B ½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ(Eigenfunction
of LTI system)
¤C¡B Parseval¡¦s Power Theorem
¤@¡B ¹ïºÙ°T¸¹(Symmetric
signal)
¤T¡B Rayleigh¡¦s Energy Theorem
¥|¡B ¹ï°¸©w²z(Duality
Theorem)
²Ä¤¸` ®É°ì»PÀW°ì¤§Ãö«Y(Time and
Frequency relations)
¥|¡B ÀW²vÂಾ»P½ÕÅÜ
(Frequency Translation and Modulation).
¤¡B ½ÕÅÜ©w²z(modulation
theorem)
¤»¡B ·L¤À»P¿n¤À(Differentiation
and Integration)
²Ä¤»¸` Impulse and transforms in the limit
¤@¡B ¯ß½Ä©Ê½è(Properties
of the unit impulses)
¤C¡B ½d¨Ò¡GRaised Cosine
Pulse
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
• µe¥X©Î¼Ð¥Ü¦h©¶ªi°T¸¹¤§½uÀWÃСC
• pºâpºâ²³æ°T¸¹¤§¥§¡¡B¥\²v¡BÁ`¥\²v»P¯à¶q¡C
• ¼g¥X°T¸¹¤§Fourier¯Å¼Æ»PÂà´«¤§ªí¥Ü¦¡¡C
• ¥Ñ®É°ì¿ëÃѰT¸¹¤§©Ê½è©Î¥ÑÀW°ì¿ëÃѰT¸¹¤§©Ê½è¡C
• µe¥X©Î¼Ð¥Ü¤èªi¦C¡B³æ¤@¤èªi»Psinc¯ßªi¡C
• »¡©ú»PÀ³¥ÎParseval¡¦s power theorem¡BRayleigh¡¦s energy theorem¡C
• ´yzFourierÂà´«¤§©w²z¡Gtime delay, scale change, ¡K
• À³¥ÎFourierÂà´«¤§©w²zpºâ°T¸¹¤§ÀWÃСC
• ÁA¸Ñ»PÀ³¥ÎºP¿n©w²z(convolution)
• »¡©úimpulses
• pºâ§t(impulses, steps, sinusoids, rectangular)¤§ÀWÃСC
¬ÛÃö¸ê®Æ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ ¤W¦C°T¸¹±N¥H¤@®É¶¡(¶g´Á)«ÂСC
Euler¡¦s theorem
¨ Euler¡¦s ¤½¦¡
¨ ¥ô¦ó©¶ªi¨ç¼Æ¥i¥Î¤U¦C¤è¦¡ªí¥Ü¬°¬Û¶q(Phasor)
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ ¨C¤@³æ¤@ÀW²v¤§©¶ªi°T¸¹¥i¥Hªí¥Ü¬°¬Û¶q(phasor)¡C
¤ ¨C¤@ÀW²v¤§¥i¥Ñ¬Û¶qµe¥X¨äÀWÃЩάÛÃСC
¨ ¥ô·N¶g´Á°T¸¹¥iªí¥Ü¬°Fourier series¡A¹BºâÀò±o¹ïÀ³¤§ÀWÃСAºÙ½uÀWÃÐ(line spectral)¡C
ªí¥Ü¬°½uÀWÃФ§³W«h
¨ ¥HÀW²vfªí¥Ü¡C
¨ ¬Û¨¤¹ïÀ³©ócosine¨ç¼Æ¡C
¨ ®¶´T¬°¥¿¼Æ¡C
¨ ¬Û¦ì¡C
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ ¶g´Á°T¸¹¡A¦³¤U¦CÃö«Y
¤ °T¸¹¥§¡È
¤ ¶g´Á°T¸¹¥§¡È
¤ ¥§¡¥\²v
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ ©¶ªi°T¸¹
¨ ¥§¡È
¨ ¥§¡¥\²v
¨ ¥ô·NÂ÷´²¤§¶g´Á°T¸¹¶g´Á¬°N, x[n]=x[n+N], ¥iªí¥Ü¦p¤U, DTFS:
¨ ¥ô·N³sÄò¤§¶g´Á°T¸¹¶g´Á¬°T, x(t)=x(t+T), ¥iªí¥Ü¦p¤U, FS:
¿Óªi(harmonics)
¨ ©Ò¦³ÀW²v¬Ò¬°¥DÀW²v(fundamental frequency)¤§¾ã¼Æ¿n¡AºÙn¦¸¿Óªi(harmonics)¡C¦U¤À¶q¤j¤p¦p¤U¡G
¤ DC¤À¶q¡G
¤ Y¬°¹ê¼Æ°T¸¹
¨ ±`pºâ¦p¤U¹Bºâ
¨ ©w¸qSinc¨ç¼Æ
¨ Sinc¨ç¼Æªi§Î
¨ »~®t¤è§¡È(§¡¤è»~®tÈ) ¡G¬°¦ô´úÈ»Pì°T¸¹¤§®t¶q¤ñ¸û¨ç¼Æ¡A¥i¥Î©ó§PÂ_¨â°T¸¹¤§¬Û¦Pµ{«×¡C
«D¶g´Á°T¸¹(nonperiodic signal) àFourier transform (FT)
¨ ¥ô¦ó«D¶g´Á°T¸¹¥i¥Hªí¥Ü¬°¤U¦Cªñ¦üÈ
°ÝÃD¡G§PÂ_¤U¦C°T¸¹¤§¤ÀªRªk¡C
¨ ¥ý§PÂ_³sÄò©ÎÂ÷´²(DT)
¨ ¦A§PÂ_¶g´Á(FS)©Î«D¶g´Á(FT)
¨ ¥ô¤@¹Bºâ¤lH, ¨D¤U¦Cµ¥¦¡¤§¸Ñ,
¨ ºÙ¯S¼x°ÝÃD
¨ ¨D岀¤§¸Ñ
½u©Ê¨t²Î¤§¯S¼x¨ç¼Æ©Ê½èThe eigenfunction Property of Linear Systems
¡§The action of the system on an eigenfunction input is multiplication by the corresponding eigenvalue.¡¨
(A) general eigenfunction
eigenfunction Y(t) or Y[n] and eigenvalue l.
(B) ³sÄòcomplex sinusoidal
eigenfunction ejwt and eigenvalue h(jw).
(C)Â÷´²complex sinusoidal
eigenfunction ejWn and eigenvalue h(ejW).
°T¸¹¤§ eigenfunction ªí¥Üªk
¤èªi¯ß½Ä¦C
¨ ¬°¶g´Á³sÄò°T¸¹
¨ ¶g´Á¬°T0
¨ ¯ß½Ä¼e¬°£n
Spectrum of rectangular pulse train with ƒ0t = 1/4 (a) Amplitude (b) Phase
Gibbs²{¶H
Fourier-series reconstruction of a
rectangular pulse train(1/2)
Gibbs phenomenon at a step discontinuity
¨ °T¸¹¤§¥§¡¥\²v»PFourier«Y¼Æ¤§Ãö«Y¡C
°T¸¹¯à¶q
¨ °T¸¹¯à¶q
¨ Y¤W¦¡¦s¦b¥B0<E<¡Û¡A«h¦¹°T¸¹ºÙºÙ¬°«D¶g´Á¤§¯à¶q°T¸¹¡C
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ Fourier Âà´«
¨ Inverse Fourier Âà´«
V(f) ÀWÃФ§¥Dn©Ê½è
¨ Fourier Âà´«¬O½Æ¼Æ¨ç¼Æ¡C
¨ V(f),f=0®ÉV(0)µ¥©óv(t)¤§±¿n¡C
¨ ¹ê¼Æ°T¸¹v(t)
¤èªi¯ß½Ä(Retangular Pulse)
¨ °ò¥»¤èªi¯ß½Ä
¨ Y
¨ ÀWÃÐ
Rectangular pulse spectrum V(ƒ) = At sinc ƒt
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ °T¸¹ÀWÃÐ
¨ä¤¤
¨ Even symmetrical¡GY
¤ ºÙ°T¸¹¬°°¸¹ïºÙ(Even symmetrical)
¨ Odd symmetrical ¡GY
¤ ºÙ°T¸¹¬°©_¹ïºÙ(Odd symmetrical)
¨ Real symmetrical¡GY°T¸¹¬°¹ê¼Æ
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ Y°T¸¹
¤ ºÙ¦]ªG°T¸¹(Causal signal)
¤ ²¨¥¤§¡A´N¬O¥u¦³°T¸¹¶}©l«á¤~¥iÆ[¹î¨ì°T¸¹¡C
¤ ¥N¤JÀWÃÐpºâ
¤ ¤W¦¡»PLaplace transformÃþ¦ü¡C
½d¨Ò¡Gcausal exponential pulse
¨ ¦³¤@¦]ªG«ü¼Æ°I´îªi§Î¡A¦³®É¶¡±`¼Æ1/b
¤ ªi§Î¨ç¼Æ
¤ ªi§Î
¨DÀWÃСH
¸Ñ¡Gcausal exponential pulse
¨ ¾ã²z¤À¥À¬°¹ê¼Æ
¤ ®¶´T
¤ ¬Û¦ì
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ Rayleigh¡¦s Energy Theorem (energy signal)Ãþ¤ñ©óParseval¡¦ power theorem (power signal)¡A»¡©ú°T¸¹v(t)¤§¯à¶q
¤ ¨ä¤¤V(f)¬°°T¸¹¤§¯à¶q±K«×ÀWÃÐ(energy spectral density)¡C
¤èªi¤§¯à¶q±K«×ÀWÃÐ(Energy spectral density of a rectangular)
¨ °²³]¦³¤@¤èªi¯ß½Ä(¼e£n)¡A¯à¶q±K«×ÀWÃÐ(energy spectral density)¡A¦p¤U¹Ï¡G
¤ °²³]¥u¨úÀW±a
¤ ¬ù¦³90%¤§¯à¶q¡C
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit |
|
¬ÛÃö¸ê®Æ |
|
¨ YÀ˵ø©Ò¦³Fourier integral pair¡A¥iµo²{¥u¦³¤@¨ÇÅܼƻP²Å¸¹¤£¦P¡C¦p¡G
¤ Y
¤ °² ³]
¤ «h
n
¨ä¤¤
¤ ¹ï°¸©w²z¡G²³æ¤§·§©À
½d¨Ò¡GSinc Pulse¡A
¨ «n¤§¤ÀªR°T¸¹
¤ ¨D¨äÀWÃСH
¨ ¸Ñ¡G
¤ ¤èªi°T¸¹¤§ÀWÃÐ
¤ À³¥Î¹ï°¸©Ê½è
¤ ±o
¨ «Å|©Ê½è(Superposition)
¨ ®É¶¡©µ¿ð»P¨è«×Åܧó(Time Delay and Scale Change)
¨ ÀW²vÂಾ»P½ÕÅÜ(Frequency Translation and Modulation)
¨ ·L¤À»P¿n¤À(Differentiation and integration)¹Bºâ
¨
Fourier
transform ¤§«Å|©Ê½è
¤ Y
¤ ¨â°T¸¹¤§½u©Ê²Õ¦X¡A¥O
¤ «h
¤ À³¥Î°T¸¹¤§½u©Ê²Õ¦X©w²z¡A«h¥ô·N°T¸¹¤§½u©Ê²Õ¦X
¨ ¥ô¦ó°T¸¹
¤ Y±Ntàt-td¡A«hºÙ¬°©µ¿ðtd¡A
¤ ¦¹©µ¿ð«á¤§°T¸¹»Pì°T¸¹¦³¬Û¦P¤§ªi«Êªi§Î¡A¦ý®É¶¡¦ì²¾¦ì¸m¤£¦P¡C
¤ ¦p¦¹°T¸¹¤§ÀWÃÐÃö«Y
n Y
n ®¶´TÀWÃÐ
¨ ®É°ì¶b¤§¨è«×©ñ¤jÁY¤p»PÀW°ì¶¡¤§Ãö«Y¡H
¤ ®É°ì»PÀW°ì¶b©ñ¤jÁY¤pÃö«Y¬°Ë¼ÆÃö«Y¡C
n ®É°ì©ñ¤jÀW°ìÁY¤p¡A®É°ìÁY¤pÀW°ì©ñ¤j¡C
¨ ÃÒ©ú¡G
½d¨Ò:¨Ï¥Î¤èªi¯ß½Äªí¥Ü¤U¦Cªi§Î
¨ ¤èªi¯ß½Ä
¨ ¼g¥X¤U¦C¹Ï§Î¤§¼Æ¾Çªí¥Ü¦¡¡A¨Ã¨DÀWÃСH
¸Ñ:¨Ï¥Î¤èªi¯ß½Äªí¥Ü¤U¦Cªi§Î
¨ ¹Ï(a)
¤ ªi§Î
¤ ÀWÃÐ
¤ ¹Ï(b)
¤ ªi§Î
¤ ÀWÃÐ
¤ À³¥Îsinc¨ç¼Æ¤§©w¸q
¨ Y
¨ «hºÙ¤U¦C¹Bºâ¬°ÀW²v²¾»P½ÕÅÜ(Frequency Translation and Modulation)¡C
¤ ¦]¬O¼
¤ ºÙ½Æ¼Æ½ÕÅÜ(complex modulation)¡A
¤ ÀWÃÐ¥u²¾¦Ü¤@³æÃäÀW±a¡C
¨ ½ÕÅÜ«e«á¤§ÀWÃСA½ÕÅÜ«e(a)¡A½ÕÅÜ«á(b)¡C
¤ ®¶´T¡B¬Û¦ì¤j¤p¬Ò¨SÅܤơC
¤ ¥ÑÀW±a0²¾¦Ü¤¤¤ßÀWfc
¨ ¹ê»ÚÀ³¥Î½ÕÅܮɡAµLªk¨Ï¥Î½Æ¼Æ°T¸¹¡A¦]¦¹¡A¨Ï¥Îcos
¤ ©Ò¥HY°T¸¹¬°®É¼Æ°T¸¹¡AÀWÃЬ°Hermitian¡C
n ©Ò¥HÀW¼e¬°ì¨Ó¨â¿¡A¦]¬°tªºÀWÃФ]¶i¤J¦Ü¥¿ÀWÃСC
n ¹ê¼Æ°T¸¹tÀWÃФ§¸ê°T¬O»P¥¿ÀWÃЬۦP(¬°Hermitian)
½d¨Ò¡GRF Pulse
¨ Y¦³¦p¤U¹Ï¤§RF°T¸¹
¤ ªí¥Ü¦p¤U
¤ ¨DÀWÃСH
n
´£¥Ü¡G ¥iµø¬°±N¯ßªi°T¸¹
¸Ñ¡GR Pulse
¨ À³¥Î½ÕÅÜ©w²z
¤ ©Ò¥H
¤ ®¶´TÀWÃЦp¡G
¨ ·L¤À»P¿n¤À¬O±`À³¥Î¤§¹Bºâ¡AY®É°ì°T¸¹·L¤À»P¿n¤À¡AÀWÃСH
¨ Differentiation theorem
¤ ©Ò¥H
¤ Nth·L¤À
¨ Integration theorem
¤ °²¦p
¤ «h
½d¨Ò¡G¤T¨¤¯ßªi(Triangular
Pulse)
¨ ¦³¤T¨¤¯ßªi¦p¡G
¤ ¨DÀWÃСH
¤ ´£¥Ü¡G¥i¥H¨Ï¥Î¿n¤À©w²z¡C¨Ã¨D
¸Ñ¡G¤T¨¤¯ßªi(Triangular Pulse)
¨ pºâ
¨ À³¥Î¿n¤À©w²z
¨ ¼Æ¾Ç¹Bºâconvolution³Q°ª«×À³¥Î©ó³q°T¤uµ{¤¤¡A¬O¤@ºØ«n¤u¨ã¡C
¤ À³¥Î©ó ¡u¨t²Î¤ÀªR¡v¡C
¤ À³¥Î©ó ¡u¾÷²v¤À§G¤§Âà´«pºâ¡v¡C
¨ Convolution¥i¥H³QÀ³¥Î©ó®É°ì»PÀW°ì¡C
¤ ®É°ìConvolutionàÀW°ì¦³¦óµ²ªG¡H
¤ ÀW°ìConvolutionà®É°ì¦³¦óµ²ªG¡H
Convolution Integral
¨ Y¦³¨â¨ç¼Æ¡A¦³¬Û¦P¤§¦ÛÅܼÆt(¦p¡G®É¶¡)
¤ «h¨â¨ç¼Æ¶¡¤§ºP¿n¹Bºâ©w¸q¬°
n ª`·N©w¸q¤§¤¤¤§£f¡A¥i¥H¬O¥ô¦ó¤§ÅܼƲŸ¹¡C
n ¤Sconvolution¬O¦³¥æ´«©Êªº©Ò¥H
ºP¿n¤§¹Ï¥Ü(Graphical interpretation of convolution)
¨ ¤U±±N¶i¦æconvolution¤§¤À¸Ñ¹Ï¥Ü
¨ ¤¤¶¡¹Lµ{¨ç¼Æ
¤ ¤À¬q¿n¤À
Graphical interpretation of convolution
Result of the convolution
½d¨Ò¡GTrapezoidal pulse ¤§convolution
¨ Y¦³¨â¨ç¼Æªi§Î¦p
¤ ¨D¨â¨ç¼Æ¤§convolution¡H
¸Ñ¡GTrapezoidal pulse ¤§convoluion
¨ ¤¤¶¡¹Lµ{¨ç¼Æ
¨ ¤À¬q¿n¤À
¨ Impulse : ¯ß½Ä¨ç¼Æ¡A¥i¥HÀ³¥Î©ó®É°ì»PÀW°ì¡A·í°T¸¹¬°©¶ªi°T¸¹®É¡A¨äÀWÃдN¥²»Ý¥HÀW°ì¤§¯ß½Ä¨ç¼Æªí¥Ü¡C
¨ Transform in the limit¡G¥H·¥¤§·§©À©Ò©w¸q¤§Âà´«¡Aimpulse function ´N¬O¤@ºØ¥H·¥·§©À©Ò©w¸q¤§¨ç¼Æ»PÂà´«¡C
¤ ±`¥Î©ó°T¸¹¤§ªí¥Ü¡A¤×¨ä¬O«D¦]ªG¤§°T¸¹¡C
Two functions that become impulses as e ® 0
¨ ¤U¹Ï¬°¨âºØ¹B¥ÎTransform in the limit©Ò©w¸q¤§impulse function¡C
¨ Unit impulse (or Dirac delta function)¬°¤@¯S®í¨ç¼Æ¡A©w¸q
¤ °ò¥»©Ê½è
¤ ¨ú¼Ë¹Bºâ¿n¤À
¨
©µ¿ð
¨
¿n¤À
¨
ºP¿n
¨
¬Û¼
¨ Y¯Âª½¬y(DC)
¤ ÀWÃСH
¤ ¥i¥H¥Htransforms in the limit¤§·§©À©w¸q
n ¦]¬°fourier transform pair
¤ Wà0±o
¨ Y¬°©¶ªi°T¸¹
¤ ÀWÃСH¥Hfrequency translation and modulation·§©À
¤ À³¥ÎEulere¤½¦¡
¤ Fourier series
½d¨Ò»¡©ú¡GFM°T¸¹¤§ÀWÃЪí¥Ü
¨ ¦p¤U¹Ï¬°FM°T¸¹»P¨äÀWÃÐ
¨ ¦p¤U¬°FM°T¸¹ªí¥Ü
¨ ÀWÃÐ
¨ ¨B¶¥¨ç¼Æ¦p¤U¹Ï
¨ ¨ç¼Æªí¥Ü¦p
¤ »P¯ß½Ä¨ç¼Æ¤§Ãö«Y
¨ ²Å¸¹¨ç¼Æ¦p¹Ï
¤ ¨ç¼Æªí¥Ü¦p
¤ ¥i¥Ñ¤U¹Ï¤§·¥È©w¸q
¤ Y£nà0 ¡A
¤ Time impulseªí¥Ü¦bÀW°ì¡A©Ò¦³ÀW²v¦³¬Û¦P¤§®¶´T¡C
¨
¡§An impulsive signal with zero duration has
infinite spectral width, whereas a constant signal with infinite duration gas
zero spectral width.¡¨
¨ ¦p¹Ï¡Graised cosine pulse
¤ ªí¥Ü¦¡¬°
¤ ¨DÀWÃСH
n ´£¥Ü¡GÀ³¥Î·L¤À©w²z¡C
¸Ñ¡GRaised Cosine Pulse
¨ ¤@¦¸·L¤À
¨ ¤T¦¸·L¤À
¨ ¤@¦¸·L¤À»P¤T¦¸·L¤À¤§Ãö«Y
¨ ¤@¦¸·L¤À»P¤T¦¸·L¤§ÀWÃÐÃö«Y
¨ ¾ã²z±o
¨ ¤ÆÂ²