²Ä¤G³¹ °T¸¹»PµûÃÐSignal and spectrum

 

§@ªÌ¡G ³¯¬L§»

¸q¦u¤j¾Ç ¹q¤l¤uµ{¨t

 

¬ÛÃö¸ê®Æ

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¥Ø¿ý

²Ä¤G³¹ °T¸¹»PµûÃÐSignal and spectrum.. 1

²Ä¤@¸` ¾Ç²ß¥Ø¼Ð... 3

²Ä¤G¸` ©¶ªi°T¸¹°ò¥»©w¸q... 4

¤@¡B ½uÀW»PFourier series. 4

¤G¡B ¶g´Á°T¸¹»P¥­§¡¥\²v... 5

¤T¡B ½d¨Ò... 5

²Ä¤T¸` Fourier representations for four class of signals. 7

¤@¡B Periodic Signal à Fourier Series (FS). 7

¤G¡B ¤T¨¤´I§Q¸­¯Å¼Æ(Trigonometric Fourier series). 8

¤T¡B »~®t¤è§¡­È(§¡¤è»~®t­È) MSE of  Representation. 9

¥|¡B ¨t²Î¯S¼x°ÝÃD²¤¶... 9

¤­¡B ½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ(Eigenfunction of  LTI system). 11

¤»¡B ´I¤ó¤ÀªR¤§¦¬Àıø¥ó... 11

¤C¡B Parseval¡¦s Power Theorem.. 14

²Ä¥|¸` Fourier Âà´«»P³sÄòÀWÃÐ... 16

¤@¡B ¹ïºÙ°T¸¹(Symmetric signal). 17

¤G¡B ¦]ªG°T¸¹(Causal signal). 17

¤T¡B Rayleigh¡¦s Energy Theorem.. 19

¥|¡B ¹ï°¸©w²z(Duality Theorem). 20

²Ä¤­¸` ®É°ì»PÀW°ì¤§Ãö«Y(Time and Frequency relations). 22

¤@¡B ­«Å|©Ê½è(Superposition). 22

¤G¡B ®É¶¡©µ¿ð (Time delay). 22

¤T¡B ¨è«×Åܧó (scale Change). 23

¥|¡B ÀW²vÂಾ»P½ÕÅÜ (Frequency Translation and Modulation). 24

¤­¡B ½ÕÅÜ©w²z(modulation theorem). 25

¤»¡B ·L¤À»P¿n¤À(Differentiation and Integration). 26

¤C¡B Convolution. 28

²Ä¤»¸` Impulse and transforms in the limit. 32

¤@¡B ¯ß½Ä©Ê½è(Properties of the unit impulses). 32

¤G¡B ¯ß½Ä¤§¹Bºâ... 33

¤T¡B Impulses in frequency. 33

¥|¡B ¨B¶¥¨ç¼Æ(Step functions). 34

¤­¡B ²Å¸¹¨ç¼Æ(Sign functions). 35

¤»¡B Impulses in Time. 36

¤C¡B ½d¨Ò¡GRaised Cosine Pulse. 36

 

 


 

²Ä¤@¸` ¾Ç²ß¥Ø¼Ð

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

 

      µe¥X©Î¼Ð¥Ü¦h©¶ªi°T¸¹¤§½uÀWÃСC

      ­pºâ­pºâ²³æ°T¸¹¤§¥­§¡¡B¥\²v¡BÁ`¥\²v»P¯à¶q¡C

      ¼g¥X°T¸¹¤§Fourier¯Å¼Æ»PÂà´«¤§ªí¥Ü¦¡¡C

      ¥Ñ®É°ì¿ëÃѰT¸¹¤§©Ê½è©Î¥ÑÀW°ì¿ëÃѰT¸¹¤§©Ê½è¡C

      µe¥X©Î¼Ð¥Ü¤èªi¦C¡B³æ¤@¤èªi»Psinc¯ßªi¡C

      »¡©ú»PÀ³¥ÎParseval¡¦s power theorem¡BRayleigh¡¦s energy theorem¡C

      ´y­zFourierÂà´«¤§©w²z¡Gtime delay, scale change, ¡K

      À³¥ÎFourierÂà´«¤§©w²z­pºâ°T¸¹¤§ÀWÃСC

      ÁA¸Ñ»PÀ³¥ÎºP¿n©w²z(convolution)

      »¡©úimpulses

      ­pºâ§t(impulses, steps, sinusoids, rectangular)¤§ÀWÃСC


 

²Ä¤G¸` ©¶ªi°T¸¹°ò¥»©w¸q

¬ÛÃö¸ê®Æ

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

½uÀW»PFourier series¡B¶g´Á°T¸¹»P¥­§¡¥\²v¡B ½d¨Ò

 

 

¨  ¤W¦C°T¸¹±N¥H¤@®É¶¡(¶g´Á)­«ÂСC

 

Euler¡¦s theorem

¨  Euler¡¦s ¤½¦¡

¨  ¥ô¦ó©¶ªi¨ç¼Æ¥i¥Î¤U¦C¤è¦¡ªí¥Ü¬°¬Û¶q(Phasor)

 

¤@¡B½uÀW»PFourier series

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

½uÀW»PFourier series¡B¶g´Á°T¸¹»P¥­§¡¥\²v¡B ½d¨Ò

 

 

¨  ¨C¤@³æ¤@ÀW²v¤§©¶ªi°T¸¹¥i¥Hªí¥Ü¬°¬Û¶q(phasor)¡C

 

¤  ¨C¤@ÀW²v¤§¥i¥Ñ¬Û¶qµe¥X¨äÀWÃЩάÛÃСC

¨  ¥ô·N¶g´Á°T¸¹¥iªí¥Ü¬°Fourier series¡A¹BºâÀò±o¹ïÀ³¤§ÀWÃСAºÙ½uÀWÃÐ(line spectral)¡C

 

ªí¥Ü¬°½uÀWÃФ§³W«h

¨  ¥HÀW²vfªí¥Ü¡C

 

¨  ¬Û¨¤¹ïÀ³©ócosine¨ç¼Æ¡C

 

 

¨  ®¶´T¬°¥¿¼Æ¡C

 

¨  ¬Û¦ì¡C


¤G¡B¶g´Á°T¸¹»P¥­§¡¥\²v

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

½uÀW»PFourier series¡B¶g´Á°T¸¹»P¥­§¡¥\²v¡B ½d¨Ò

 

¨  ¶g´Á°T¸¹¡A¦³¤U¦CÃö«Y

 

¤  °T¸¹¥­§¡­È

 

¤  ¶g´Á°T¸¹¥­§¡­È


¤  ¥­§¡¥\²v

 

¤T¡B½d¨Ò

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

½uÀW»PFourier series¡B¶g´Á°T¸¹»P¥­§¡¥\²v¡B ½d¨Ò

 

 

¨  ©¶ªi°T¸¹


¨  ¥­§¡­È


¨  ¥­§¡¥\²v

 


 

²Ä¤T¸` Fourier representations for four class of signals

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

 

¤@¡BPeriodic Signal à Fourier Series (FS)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

¨  ¥ô·NÂ÷´²¤§¶g´Á°T¸¹¶g´Á¬°N, x[n]=x[n+N], ¥iªí¥Ü¦p¤U, DTFS:

 

¨  ¥ô·N³sÄò¤§¶g´Á°T¸¹¶g´Á¬°T, x(t)=x(t+T), ¥iªí¥Ü¦p¤U, FS:

 

¿Óªi(harmonics)

¨  ©Ò¦³ÀW²v¬Ò¬°¥DÀW²v(fundamental frequency)¤§¾ã¼Æ­¿n¡AºÙn¦¸¿Óªi(harmonics)¡C¦U¤À¶q¤j¤p¦p¤U¡G

 

¤  DC¤À¶q¡G

 

¤  ­Y¬°¹ê¼Æ°T¸¹

 

 

¤G¡B¤T¨¤´I§Q¸­¯Å¼Æ(Trigonometric Fourier series)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

 

¨  ±`­pºâ¦p¤U¹Bºâ

 

¨  ©w¸qSinc¨ç¼Æ


¨  Sinc¨ç¼Æªi§Î

 

¤T¡B»~®t¤è§¡­È(§¡¤è»~®t­È) MSE of  Representation

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

¨  »~®t¤è§¡­È(§¡¤è»~®t­È) ¡G¬°¦ô´ú­È»P­ì°T¸¹¤§®t¶q¤ñ¸û¨ç¼Æ¡A¥i¥Î©ó§PÂ_¨â°T¸¹¤§¬Û¦Pµ{«×¡C

 

«D¶g´Á°T¸¹(nonperiodic signal) àFourier transform (FT)

¨  ¥ô¦ó«D¶g´Á°T¸¹¥i¥Hªí¥Ü¬°¤U¦Cªñ¦ü­È

 

°ÝÃD¡G§PÂ_¤U¦C°T¸¹¤§¤ÀªRªk¡C


¨  ¥ý§PÂ_³sÄò©ÎÂ÷´²(DT)

¨  ¦A§PÂ_¶g´Á(FS)©Î«D¶g´Á(FT)

 

¥|¡B¨t²Î¯S¼x°ÝÃD²¤¶

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

¨  ¥ô¤@¹Bºâ¤lH, ¨D¤U¦Cµ¥¦¡¤§¸Ñ,

¨  ºÙ¯S¼x°ÝÃD

 

¨  ¨D岀¤§¸Ñ

 

½u©Ê¨t²Î¤§¯S¼x¨ç¼Æ©Ê½èThe eigenfunction Property of Linear Systems

¡§The action of the system on an eigenfunction input is multiplication by the corresponding eigenvalue.¡¨

(A)   general eigenfunction

 

eigenfunction Y(t) or Y[n] and eigenvalue l.

(B) ³sÄòcomplex sinusoidal

eigenfunction ejwt and eigenvalue h(jw).

(C)Â÷´²complex sinusoidal

eigenfunction ejWn and eigenvalue h(ejW).

 

°T¸¹¤§ eigenfunction ªí¥Üªk

 

 

¤­¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ(Eigenfunction of  LTI system)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

 

¤»¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 




¤èªi¯ß½Ä¦C

¨  ¬°¶g´Á³sÄò°T¸¹

¨  ¶g´Á¬°T0

¨  ¯ß½Ä¼e¬°£n

 

Spectrum of rectangular pulse train with  ƒ0t = 1/4  (a) Amplitude  (b) Phase

 


 

Gibbs²{¶H





 

Fourier-series reconstruction of a rectangular pulse train(1/2)

 

Gibbs phenomenon at a step discontinuity

 

 

¤C¡BParseval¡¦s Power Theorem

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

Periodic Signal and Fourier Series (FS)¡B¤T¨¤´I§Q¸­¯Å¼Æ¡B»~®t¤è§¡­È¡B¨t²Î¯S¼x°ÝÃD²¤¶¡B½u©Ê«D®ÉÅܨt²Î¤§¯S¼x¨ç¼Æ¡B´I¤ó¤ÀªR¤§¦¬Àıø¥ó¡BParseval¡¦s Power Theorem

 

 

¨  °T¸¹¤§¥­§¡¥\²v»PFourier«Y¼Æ¤§Ãö«Y¡C

 

°T¸¹¯à¶q

¨  °T¸¹¯à¶q

¨  ­Y¤W¦¡¦s¦b¥B0<E<¡Û¡A«h¦¹°T¸¹ºÙºÙ¬°«D¶g´Á¤§¯à¶q°T¸¹¡C

 


 

²Ä¥|¸` Fourier Âà´«»P³sÄòÀWÃÐ

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¹ïºÙ°T¸¹¡B¦]ªG°T¸¹¡BRayleigh¡¦s Energy Theorem¡B¹ï°¸©w²z

 

 

¨  Fourier Âà´«

 

¨  Inverse Fourier Âà´«

 

 

V(f) ÀWÃФ§¥D­n©Ê½è

¨  Fourier Âà´«¬O½Æ¼Æ¨ç¼Æ¡C

¨  V(f),f=0®ÉV(0)µ¥©óv(t)¤§­±¿n¡C


¨  ¹ê¼Æ°T¸¹v(t)



¤èªi¯ß½Ä(Retangular Pulse)

¨  °ò¥»¤èªi¯ß½Ä

 

¨  ­Y

¨  ÀWÃÐ

 

 

Rectangular pulse spectrum V(ƒ) = At sinc ƒt

 

 

¤@¡B¹ïºÙ°T¸¹(Symmetric signal)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¹ïºÙ°T¸¹¡B¦]ªG°T¸¹¡BRayleigh¡¦s Energy Theorem¡B¹ï°¸©w²z

 

 

¨  °T¸¹ÀWÃÐ

¨ä¤¤

 

 

¨  Even symmetrical¡G­Y

¤  ºÙ°T¸¹¬°°¸¹ïºÙ(Even symmetrical)

¨  Odd symmetrical ¡G­Y

¤  ºÙ°T¸¹¬°©_¹ïºÙ(Odd symmetrical)

¨  Real symmetrical¡G­Y°T¸¹¬°¹ê¼Æ

 

 

¤G¡B¦]ªG°T¸¹(Causal signal)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¹ïºÙ°T¸¹¡B¦]ªG°T¸¹¡BRayleigh¡¦s Energy Theorem¡B¹ï°¸©w²z

 

 

¨  ­Y°T¸¹

¤  ºÙ¦]ªG°T¸¹(Causal signal)

¤  ²¨¥¤§¡A´N¬O¥u¦³°T¸¹¶}©l«á¤~¥iÆ[¹î¨ì°T¸¹¡C

¤  ¥N¤JÀWÃЭpºâ

 

¤  ¤W¦¡»PLaplace transformÃþ¦ü¡C

 

½d¨Ò¡Gcausal exponential pulse

¨  ¦³¤@¦]ªG«ü¼Æ°I´îªi§Î¡A¦³®É¶¡±`¼Æ1/b

¤  ªi§Î¨ç¼Æ

 

¤  ªi§Î

¨DÀWÃСH

¸Ñ¡Gcausal exponential pulse

¨  ¾ã²z¤À¥À¬°¹ê¼Æ

 

¤  ®¶´T

 

¤  ¬Û¦ì

 

¤T¡BRayleigh¡¦s Energy Theorem

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¹ïºÙ°T¸¹¡B¦]ªG°T¸¹¡BRayleigh¡¦s Energy Theorem¡B¹ï°¸©w²z

 

 

¨  Rayleigh¡¦s Energy Theorem (energy signal)Ãþ¤ñ©óParseval¡¦ power theorem (power signal)¡A»¡©ú°T¸¹v(t)¤§¯à¶q

 

¤  ¨ä¤¤V(f)¬°°T¸¹¤§¯à¶q±K«×ÀWÃÐ(energy spectral density)¡C

 

¤èªi¤§¯à¶q±K«×ÀWÃÐ(Energy spectral density of a rectangular)

¨  °²³]¦³¤@¤èªi¯ß½Ä(¼e£n)¡A¯à¶q±K«×ÀWÃÐ(energy spectral density)¡A¦p¤U¹Ï¡G

¤  °²³]¥u¨úÀW±a

 

¤  ¬ù¦³90%¤§¯à¶q¡C

 

¥|¡B¹ï°¸©w²z(Duality Theorem)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¹ïºÙ°T¸¹¡B¦]ªG°T¸¹¡BRayleigh¡¦s Energy Theorem¡B¹ï°¸©w²z

 

 

¨  ­YÀ˵ø©Ò¦³Fourier integral pair¡A¥iµo²{¥u¦³¤@¨ÇÅܼƻP²Å¸¹¤£¦P¡C¦p¡G

¤  ­Y

¤  °² ³]

¤  «h

n  ¨ä¤¤

 

¤  ¹ï°¸©w²z¡G²³æ¤§·§©À

 

½d¨Ò¡GSinc Pulse¡A

¨  ­«­n¤§¤ÀªR°T¸¹

¤  ¨D¨äÀWÃСH

¨  ¸Ñ¡G

¤  ¤èªi°T¸¹¤§ÀWÃÐ

 

¤  À³¥Î¹ï°¸©Ê½è

 

¤  ±o

 


 

²Ä¤­¸` ®É°ì»PÀW°ì¤§Ãö«Y(Time and Frequency relations)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ­«Å|©Ê½è(Superposition)

¨  ®É¶¡©µ¿ð»P¨è«×Åܧó(Time Delay and Scale Change)

¨  ÀW²vÂಾ»P½ÕÅÜ(Frequency Translation and Modulation)

¨  ·L¤À»P¿n¤À(Differentiation and integration)¹Bºâ

 

 

¤@¡B­«Å|©Ê½è(Superposition)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  Fourier transform ¤§­«Å|©Ê½è

¤  ­Y

¤  ¨â°T¸¹¤§½u©Ê²Õ¦X¡A¥O

¤  «h

¤  À³¥Î°T¸¹¤§½u©Ê²Õ¦X©w²z¡A«h¥ô·N°T¸¹¤§½u©Ê²Õ¦X

 

 

¤G¡B®É¶¡©µ¿ð (Time delay)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ¥ô¦ó°T¸¹

¤  ­Y±Ntàt-td¡A«hºÙ¬°©µ¿ðtd¡A

¤  ¦¹©µ¿ð«á¤§°T¸¹»P­ì°T¸¹¦³¬Û¦P¤§ªi«Êªi§Î¡A¦ý®É¶¡¦ì²¾¦ì¸m¤£¦P¡C

¤  ¦p¦¹°T¸¹¤§ÀWÃÐÃö«Y

n  ­Y

n  ®¶´TÀWÃÐ

 

 

¤T¡B¨è«×Åܧó (scale Change)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ®É°ì¶b¤§¨è«×©ñ¤jÁY¤p»PÀW°ì¶¡¤§Ãö«Y¡H

¤  ®É°ì»PÀW°ì¶b©ñ¤jÁY¤pÃö«Y¬°­Ë¼ÆÃö«Y¡C

n  ®É°ì©ñ¤jÀW°ìÁY¤p¡A®É°ìÁY¤pÀW°ì©ñ¤j¡C

 

¨  ÃÒ©ú¡G

 

½d¨Ò:¨Ï¥Î¤èªi¯ß½Äªí¥Ü¤U¦Cªi§Î

¨  ¤èªi¯ß½Ä

 

¨  ¼g¥X¤U¦C¹Ï§Î¤§¼Æ¾Çªí¥Ü¦¡¡A¨Ã¨DÀWÃСH

 

¸Ñ:¨Ï¥Î¤èªi¯ß½Äªí¥Ü¤U¦Cªi§Î

¨  ¹Ï(a)

¤  ªi§Î

¤  ÀWÃÐ

¤  ¹Ï(b)

¤  ªi§Î

 

¤  ÀWÃÐ

 

¤  À³¥Îsinc¨ç¼Æ¤§©w¸q

 

 

¥|¡BÀW²vÂಾ»P½ÕÅÜ (Frequency Translation and Modulation)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ­Y

¨  «hºÙ¤U¦C¹Bºâ¬°ÀW²v²¾»P½ÕÅÜ(Frequency Translation and Modulation)¡C

¤  ¦]¬O­¼

¤  ºÙ½Æ¼Æ½ÕÅÜ(complex modulation)¡A

¤  ÀWÃÐ¥u²¾¦Ü¤@³æÃäÀW±a¡C

¨  ½ÕÅÜ«e«á¤§ÀWÃСA½ÕÅÜ«e(a)¡A½ÕÅÜ«á(b)¡C

¤  ®¶´T¡B¬Û¦ì¤j¤p¬Ò¨SÅܤơC

¤  ¥ÑÀW±a0²¾¦Ü¤¤¤ßÀWfc

 

 

¤­¡B½ÕÅÜ©w²z(modulation theorem)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ¹ê»ÚÀ³¥Î½ÕÅܮɡAµLªk¨Ï¥Î½Æ¼Æ°T¸¹¡A¦]¦¹¡A¨Ï¥Îcos

 

¤  ©Ò¥H­Y°T¸¹¬°®É¼Æ°T¸¹¡AÀWÃЬ°Hermitian¡C

n  ©Ò¥HÀW¼e¬°­ì¨Ó¨â­¿¡A¦]¬°­tªºÀWÃФ]¶i¤J¦Ü¥¿ÀWÃСC

n  ¹ê¼Æ°T¸¹­tÀWÃФ§¸ê°T¬O»P¥¿ÀWÃЬۦP(¬°Hermitian)

 

 

½d¨Ò¡GRF Pulse

¨  ­Y¦³¦p¤U¹Ï¤§RF°T¸¹

¤  ªí¥Ü¦p¤U

 

 

¤  ¨DÀWÃСH

n  ´£¥Ü¡G       ¥iµø¬°±N¯ßªi°T¸¹  ½ÕÅܦÜ

¸Ñ¡GR Pulse

¨  À³¥Î½ÕÅÜ©w²z

 

¤  ©Ò¥H

 

¤  ®¶´TÀWÃЦp¡G

 

 

¤»¡B·L¤À»P¿n¤À(Differentiation and Integration)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ·L¤À»P¿n¤À¬O±`À³¥Î¤§¹Bºâ¡A­Y®É°ì°T¸¹·L¤À»P¿n¤À¡AÀWÃСH

¨  Differentiation theorem

 

¤  ©Ò¥H

¤  Nth·L¤À

¨  Integration theorem

 

¤  °²¦p

¤  «h

 

 

½d¨Ò¡G¤T¨¤¯ßªi(Triangular Pulse)

¨  ¦³¤T¨¤¯ßªi¦p¡G

¤  ¨DÀWÃСH

¤  ´£¥Ü¡G¥i¥H¨Ï¥Î¿n¤À©w²z¡C¨Ã¨D

 

¸Ñ¡G¤T¨¤¯ßªi(Triangular Pulse)

¨  ­pºâ

 

¨  À³¥Î¿n¤À©w²z

 

 

 

¤C¡BConvolution

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

­«Å|©Ê½è¡B®É¶¡©µ¿ð¡B¨è«×Åܧó¡BÀW²vÂಾ»P½ÕÅÜ¡B½ÕÅÜ©w²z¡B·L¤À»P¿n¤À¡BConvolution

 

 

¨  ¼Æ¾Ç¹Bºâconvolution³Q°ª«×À³¥Î©ó³q°T¤uµ{¤¤¡A¬O¤@ºØ­«­n¤u¨ã¡C

¤  À³¥Î©ó ¡u¨t²Î¤ÀªR¡v¡C

¤  À³¥Î©ó ¡u¾÷²v¤À§G¤§Âà´«­pºâ¡v¡C

¨  Convolution¥i¥H³QÀ³¥Î©ó®É°ì»PÀW°ì¡C

¤  ®É°ìConvolutionàÀW°ì¦³¦óµ²ªG¡H

¤  ÀW°ìConvolutionà®É°ì¦³¦óµ²ªG¡H

 

Convolution Integral

¨  ­Y¦³¨â¨ç¼Æ¡A¦³¬Û¦P¤§¦ÛÅܼÆt(¦p¡G®É¶¡)

¤  «h¨â¨ç¼Æ¶¡¤§ºP¿n¹Bºâ©w¸q¬°

 

n  ª`·N©w¸q¤§¤¤¤§£f¡A¥i¥H¬O¥ô¦ó¤§ÅܼƲŸ¹¡C

n  ¤Sconvolution¬O¦³¥æ´«©Êªº©Ò¥H

 

 

ºP¿n¤§¹Ï¥Ü(Graphical interpretation of convolution)

¨  ¤U­±±N¶i¦æconvolution¤§¤À¸Ñ¹Ï¥Ü

 

¨  ¤¤¶¡¹Lµ{¨ç¼Æ

 

¤  ¤À¬q¿n¤À

 

Graphical interpretation of convolution

Result of the convolution

 

 

½d¨Ò¡GTrapezoidal pulse ¤§convolution

¨  ­Y¦³¨â¨ç¼Æªi§Î¦p

¤  ¨D¨â¨ç¼Æ¤§convolution¡H

¸Ñ¡GTrapezoidal pulse ¤§convoluion

¨  ¤¤¶¡¹Lµ{¨ç¼Æ

¨  ¤À¬q¿n¤À

 

 


 

²Ä¤»¸` Impulse and transforms in the limit

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  Impulse : ¯ß½Ä¨ç¼Æ¡A¥i¥HÀ³¥Î©ó®É°ì»PÀW°ì¡A·í°T¸¹¬°©¶ªi°T¸¹®É¡A¨äÀWÃдN¥²»Ý¥HÀW°ì¤§¯ß½Ä¨ç¼Æªí¥Ü¡C

¨  Transform in the limit¡G¥H·¥­­¤§·§©À©Ò©w¸q¤§Âà´«¡Aimpulse function ´N¬O¤@ºØ¥H·¥­­·§©À©Ò©w¸q¤§¨ç¼Æ»PÂà´«¡C

¤  ±`¥Î©ó°T¸¹¤§ªí¥Ü¡A¤×¨ä¬O«D¦]ªG¤§°T¸¹¡C

 

Two functions that become impulses as e ® 0

¨  ¤U¹Ï¬°¨âºØ¹B¥ÎTransform in the limit©Ò©w¸q¤§impulse function¡C

 

¤@¡B¯ß½Ä©Ê½è(Properties of the unit impulses)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  Unit impulse (or Dirac delta function)¬°¤@¯S®í¨ç¼Æ¡A©w¸q

 

¤  °ò¥»©Ê½è

 

¤  ¨ú¼Ë¹Bºâ¿n¤À

 

¤G¡B¯ß½Ä¤§¹Bºâ

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  ©µ¿ð

 

¨  ¿n¤À

 

¨  ºP¿n

 

¨  ¬Û­¼

 

 

¤T¡BImpulses in frequency

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  ­Y¯Âª½¬y(DC)  

¤  ÀWÃСH

¤  ¥i¥H¥Htransforms in the limit¤§·§©À©w¸q

 

n  ¦]¬°fourier transform pair

 

¤  Wà0±o

 

¨  ­Y¬°©¶ªi°T¸¹

¤  ÀWÃСH¥Hfrequency translation and modulation·§©À

 

¤  À³¥ÎEulere¤½¦¡

 

¤  Fourier series

 

 

½d¨Ò»¡©ú¡GFM°T¸¹¤§ÀWÃЪí¥Ü

¨  ¦p¤U¹Ï¬°FM°T¸¹»P¨äÀWÃÐ

¨  ¦p¤U¬°FM°T¸¹ªí¥Ü

 

¨  ÀWÃÐ

 

¥|¡B¨B¶¥¨ç¼Æ(Step functions)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  ¨B¶¥¨ç¼Æ¦p¤U¹Ï

¨  ¨ç¼Æªí¥Ü¦p

 

¤  »P¯ß½Ä¨ç¼Æ¤§Ãö«Y

 

¤­¡B²Å¸¹¨ç¼Æ(Sign functions)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  ²Å¸¹¨ç¼Æ¦p¹Ï

¤  ¨ç¼Æªí¥Ü¦p

 

¤  ¥i¥Ñ¤U¹Ï¤§·¥­­­È©w¸q

 

 

¤»¡BImpulses in Time

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

 

¤  ­Y£nà0 ¡A

¤  Time impulseªí¥Ü¦bÀW°ì¡A©Ò¦³ÀW²v¦³¬Û¦P¤§®¶´T¡C

¨  ¡§An impulsive signal with zero duration has infinite spectral width, whereas a constant signal with infinite duration gas zero spectral width.¡¨

 

 

¤C¡B½d¨Ò¡GRaised Cosine Pulse

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B©¶ªi°T¸¹°ò¥»©w¸q¡BFourier representations¡BFourierÂà´«»P³sÄòÀWÃСB®É°ì»PÀW°ì¤§Ãö«Y¡BImpulse and transforms in the limit

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½Ä©Ê½è¡B¯ß½Ä¤§¹Bºâ¡BImpulses in frequency¡B¨B¶¥¨ç¼Æ¡B²Å¸¹¨ç¼Æ¡BImpulses in Time¡B½d¨Ò¡GRaised Cosine Pulse

 

 

¨  ¦p¹Ï¡Graised cosine pulse

¤  ªí¥Ü¦¡¬°

 

¤  ¨DÀWÃСH

n  ´£¥Ü¡GÀ³¥Î·L¤À©w²z¡C

¸Ñ¡GRaised Cosine Pulse

¨  ¤@¦¸·L¤À

 

¨  ¤T¦¸·L¤À

 

¨  ¤@¦¸·L¤À»P¤T¦¸·L¤À¤§Ãö«Y

¨  ¤@¦¸·L¤À»P¤T¦¸·L¤§ÀWÃÐÃö«Y

¨  ¾ã²z±o

¨  ¤ÆÂ²