²Ä¤T³¹ °T¸¹¶Ç¿é»PÂoªiSIGNAL TRANSMISSION AND FILTERING

 

§@ªÌ¡G ³¯¬L§»

¸q¦u¤j¾Ç ¹q¤l¤uµ{¨t

 

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

 

¥Ø¿ý

²Ä¤T³¹ °T¸¹¶Ç¿é»PÂoªiSIGNAL TRANSMISSION AND FILTERING.. 1

²Ä¤@¸` ¾Ç²ß¥Ø¼Ð... 3

²Ä¤G¸` ½u©Ê«D®ÉÅܨt²ÎÅTÀ³Response of LTI Systems. 4

¤@¡B ¯ß½ÄÅTÀ³»P­«Å|¿n¤À(Impulse response and superposition Integral ). 4

¤G¡B ¨B¶¥ÅTÀ³(Step response ). 5

¤T¡B Âಾ¨ç¼Æ... 7

¥|¡B ¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³... 7

¤­¡B Âಾ¨ç¼Æ»PÀW²vÅTÀ³... 8

¤»¡B ½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³... 9

²Ä¤T¸` ¤è¶ô¹Ï¤ÀªR... 11

¤@¡B ±`¨£¨t²Î¥\¯à(¤è¶ô¹Ï¤ÀªR). 11

¤G¡B ¨ÃÁp(parallel). 11

¤T¡B ¦ê±µ(cascade). 12

¥|¡B °j±Â(feedback). 12

¤­¡B ½d¨Ò¡GZero-order hold(®É°ì). 13

²Ä¥|¸` ¶Ç¿é¤¤¤§°T¸¹¥¢¯u(Signal Distortion in Transmission). 14

¤@¡B µL¥¢¯u¶Ç¿é(Distortionless Transmission). 14

¤G¡B ½u©Ê¥¢¯u(Linear distortion). 15

¤T¡B ©T©w¬Û¦ì²¾¡G½u©Ê¥¢¯u(Linear distortion). 16

¥|¡B µ¥¤Æ¾¹(Equalization)·§©À... 16

¤­¡B µ¥¤Æ¾¹(Equalization). 16

¤»¡B ¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹... 18

¤C¡B «D½u©Ê¥¢¯u... 19

¤K¡B §í¨î¾¹companding(compressing & expanding). 19

²Ä¤­¸` ¶Ç¿é·l¥¢¡B¼W¯q»P¤À¨©(dB)(Transmission Loss¡BGAIN and Decibels). 21

¤@¡B ¨t²Î¥\²v¼W¯q(Power gain). 21

¤G¡B ¶Ç¿é·l¥¢»P¤¤Ä~¾¹... 22

¤T¡B ¥úÅÖ(Fiber Optics). 23

¥|¡B ®gÀW¶Ç¿é... 24

¤­¡B ª½µø¶Ç¿é(line-of-sight propagation). 25

¤»¡B ½d¨Ò :½Ã¬P¤¤Ä~¨t²Î(Satellite relay system). 25

²Ä¤»¸` Âoªi¾¹»PÂoªi(Filter and Filtering). 27

¤@¡B Transfer function of a ideal bandpass filter. 27

¤G¡B ²z·QÂoªi¾¹(ideal filter). 27

¤T¡B ¦³­­ÀW¼e»P¦³­­®É¶¡(Bandlimiting and Timelimiting). 28

¥|¡B ¨å«¬±a³qÂoªi¾¹(Typical amplitude ratio of a real bandpass filter). 29

¤­¡B ¹ê»ÚÂoªi¾¹(real filter). 29

¤»¡B ±`¨£Âoªi¾¹³]­p¤èªk... 30

¤C¡B ¯ßªiÅTÀ³»P¤W¤É®É¶¡... 31

¤K¡B Response of an LPF. 31

²Ä¤C¸` ¥¿¥æÂoªi¾¹»P§Æ§B¯SÂà´«(Quadrature Filters and Hilbert Transforms). 33

¤@¡B §Æ§B¯SÂà´«©Ê½è(Property of Hilbert Transforms). 33

¤G¡B ½d¨Ò Hilbert transform of a cosine Signal 33

¤T¡B ½d¨Ò: Hilbert transform of a Rectangular Signal 34

²Ä¤K¸` ¬ÛÃö¨ç¼Æ»PÀWÃбK«×(Correlation and Spectral Density). 35

¤@¡B ¥\²v°T¸¹¤§¬ÛÃö©Ê(Correlation of power Signals). 35

¤G¡B ¯à¶q°T¸¹¤§¬ÛÃö©Ê(Correlation of Energy Signals). 37

¤T¡B ÀWÃбK«×¨ç¼Æ(Spectral Density Functions). 38

¥|¡B ½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹). 40

 


 

²Ä¤@¸` ¾Ç²ß¥Ø¼Ð

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

 

¨  ¥H¯ß½Ä(impulse)ÅTÀ³(response)¡B¨B¶¥(step)ÅTÀ³¡BÂಾ¨ç¼Æ(transfer function)£¾µ¥¡A´y­z»PÀ³¥ÎLTI¨t²Î¤§¿é¥X¿é¤JÃö«Y¡C

¨  ¨Ï¥ÎÀW°ì¤ÀªR¨t²Î¤§·Ç½T©Î¶i¦ü¿é¥X¡C

¨  ¥Ñ¨t²Î¤è¶ô¹Ï¨D±oÂಾ¨ç¼Æ¡C

¨  ¤À¿ëamplitude distortion¡Bdelay distortion¡Blinear distortion and nonlinear distortion¡C

¨  «ü¥X¤wª¾³q¹DµL¥¢¯u¶Ç¿é¤§ÀW±a½d³ò¡A¨Dµ¹©wÀW±a¤§µL¥¢¯u¶Ç¿é©Ò¶·¤§µ¥¤Æ¾¹(equalization)³W®æ¡C

¨  À³¥ÎdB­pºâ¶Ç¿é¨t²Î¡B¹qÆl¡B©ñ¤j¾¹©Ò»Ý¤§°T¸¹¥\²v¡C

¨  °Q½×°T¸¹¸g¥úÅÖ»P½Ã¬P¨t²Î¶Ç¿é©Ò»Ý¤§¯S©Ê¡C

¨  «ü¥X»Pµe¥X²z·QLPF¡BBPF¡BHPF¤§H(f)»Ph(t)

¨  ¥ÑH(f)§ä¥X¹ê»ÚLPF¤§3dBÀW¼e¡C

¨  ´y­z»PÀ³¥Î¯ßªi¶Ç¿é©Ò»Ý¤§ÀW¼e¡C

¨  ©w¸q¥\²v°T¸¹©Î¯à¶q°T¸¹¤§¤¬¬ÛÃö»P¦Û¬ÛÃö¨ç¼Æ¡A¨Ã´y­z¬ÛÃö©Ê½è¡C

¨  ´y­zWiener-Kinchine©w²z»PÀWÃбK«×¨ç¼Æ(spectral density function)¤§©Ê½è

¨  µ¹©w¨t²ÎH(f)»P¿é¤J¤§¬ÛÃö¨ç¼Æ©ÎÀWÃбK«×¨ç¼Æ¡A¨D¥X¿é¥X¤§¬ÛÃö¨ç¼Æ©ÎÀWÃбK«×¨ç¼Æ¡C

 


 

²Ä¤G¸` ½u©Ê«D®ÉÅܨt²ÎÅTÀ³Response of LTI Systems

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  ¨t²Î¿é¥X¤JÃö«Y

 

¨  °²³]¨t²ÎF½u©Ê«D®ÉÅܨt²Î

 

¨  °T¸¹¬°°ò¥»°T¸¹¤§½u©Ê²Õ¦X

 

¨  «h¿é¥X¬°¦U°ò¥»°T¸¹¿é¥X¤§½u©Ê²Õ¦X

¨  ¿é¤J©µ¿ð¿é¥X¤]©µ¿ð

 

¨  ½u©Ê«D®ÉÅܨt²ÎÃö«Y¥iªí¥Ü¬°¤U¦C·L¤À¤èµ{

 

 

¤@¡B¯ß½ÄÅTÀ³»P­«Å|¿n¤À(Impulse response and superposition Integral )

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  ¨t²Î¯ß½ÄÅTÀ³

 

¨  ¥ô·N°T¸¹¿é¤J

 

¨  ¨t²Î¤§¿é¥X

 

¨  ½u©Ê«D®ÉÅܨt²Î¤§¿é¥X¤JÃö«Y¥iªí¥Ü¡A¨t²Î¯ß½ÄÅTÀ³»P¿é¤J°T¸¹¤§Á·¿n

 

 

¤G¡B¨B¶¥ÅTÀ³(Step response )

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  ¨B¶¥ÅTÀ³

 

¨  ¯ß½ÄÅTÀ³»P¨B¶¥ÅTÀ³¤§Ãö«Y

 

¨  ¨t²ÎºP¿n¹Bºâ¤§·L¤À¹Bºâ

 

¤@¶¥¨t²Î¤§®É¶¡ÅTÀ³_¨B¶¥ÅTÀ³

¨  ¤@¶¥¨t²Î

 

¨  ¨t²Î¯ß½ÄÅTÀ³

 

¨  ¨B¶¥ÅTÀ³

 

¤@¶¥¨t²Î¤§®É¶¡ÅTÀ³_¤èªi¯ß½ÄÅTÀ³

¨  ¤@¶¥¨t²Î

¨  ¤èªi¯ß½ÄÅTÀ³

¡A

¡A

¡A

¨  ¯ß½Ä¼e 

£n>>1/(RC)

£n~=1/(RC)

£n<<1/(RC)

 

 

¤T¡BÂಾ¨ç¼Æ

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  Âಾ¨ç¼Æ¡G¯ß½ÄÅTÀ³¤§´I¤óÂà´«

 

¨  ¹ê¼Æ¨t²Î¤§Âಾ¨ç¼Æ

¡A 

 

 

¥|¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  °²³]¿é¤J(¬Û¶q«¬¦¡)

¡A

 

¨  ¨t²Î¿é¥X

 

¨  ÀW²vÅTÀ³

¨  ¨t²Î¿é¥X(¬Û¶q«¬¦¡)

¡A

¡A

 

 

¤­¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  °²³]¿é¤J¨t²Î¿é¥X(¬Û¶q«¬¦¡)

 

¨  ÀW²vÅTÀ³

 

¨  ¥\²vÀWÃÐ

 

¨  ¯à¶q

 

¨  ¨t²Î¿é¤J¡B¿é¥XÅTÀ³»PÂಾ¨ç¼ÆÃö«Y

 

¨  ¨t²Î¬°LTI¨t²Î¡AÂಾ¨ç¼Æ¥iªí¥Ü¦p¤U

 

¨  ·í°T¿é¤J°T¸¹¬°³æÀW°T¸¹¡A«h¿é¤J¿é¥X¤§®É°ì¤ñ­È¬°¸ÓÀW²v¤§Âಾ¨ç¼Æ

¨  ·í ¡A

 

 

¤»¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¯ß½ÄÅTÀ³»P­«Å|¿n¤À¡B¨B¶¥ÅTÀ³¡BÂಾ¨ç¼Æ¡B¨t²Î¿é¥XÅTÀ³&ÀW²vÅTÀ³¡BÂಾ¨ç¼Æ»PÀW²vÅTÀ³¡B½d¨Ò¡G¤@¶¥¨t²Î¤§ÀW²vÅTÀ³

 

 

¨  RC¹q¸ô¦p¤U¹Ï¡G

¨  ­Y¿é¤J¬°x(t)¡A¿é¥X¬°y(t)¡A¨D¦¹¹Ï¤§Âಾ¨ç¼Æ¡A¨Ã²³æ¤ÀªR¨t²Î©Ê¯à¡C

¸Ñªk¡G

¨  À³¥Î¸`ÂI¤ÀªR¡A¥HÀW°ì­pºâ

 

¨  ©w¸q¨t²ÎÀW¼e

 

¨  Âಾ¨ç¼Æ¤§®¶´T»P¬Û¦ìÅTÀ³¤À§O¬°

¡A

 

»¡©ú¡G

 

¨  ºÙ§C³qÂoªi¾¹¡AÀW¼e(³q¹L°T¸¹¤§ÀW±a¼e)

 

¨  °T¸¹³q¹L¦¹¨t²Î¡A­Y°T¸¹ÀW¼eW

¨  W<<B¡GºÙ«D¥¢¯u¶Ç¿é(undistorted transmission)

¨  W~=B¡G¨Ì°T¸¹ÀWÃлP¨t²ÎÂಾ¨ç¼Æ¦Ó©w

¨  W>>B¡FºÙ¥¢¯u(distorted)

¨  °T¸¹³q¹L§C³qÂoªi¾¹µ²ªG

¨  ¹Ï(a) W<<B¡A ¹Ï(b) W ~= B¡A¹Ï(c) W>>B

 


 

²Ä¤T¸` ¤è¶ô¹Ï¤ÀªR

¤@¡B±`¨£¨t²Î¥\¯à(¤è¶ô¹Ï¤ÀªR)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

±`¨£¨t²Î¥\¯à¡B¨ÃÁp¡B¦ê±µ¡B°j±Â¡B½d¨Ò¡GZero-order hold(®É°ì)

 

 

 

¨  À³¥Î±`¨£¨t²Î¥\¯à¡A¸g¥Ñ¨ÃÁp¡B¦ê±µ¡B°j±Â¥i¤w²Õ¦¨¦hºØ¦h¥\¯à¨t²Î©Î¨t²Î¤ÀªR¡C

¨  ¨ÃÁp(parallel)¡G

 

¨  ¦ê±µ(cascade)¡G

 

¨  °j±Â(feedback)¡G

 

 

¤G¡B¨ÃÁp(parallel)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

±`¨£¨t²Î¥\¯à¡B¨ÃÁp¡B¦ê±µ¡B°j±Â¡B½d¨Ò¡GZero-order hold(®É°ì)

 

 

 

¤T¡B¦ê±µ(cascade)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

±`¨£¨t²Î¥\¯à¡B¨ÃÁp¡B¦ê±µ¡B°j±Â¡B½d¨Ò¡GZero-order hold(®É°ì)

 

 

 

¥|¡B°j±Â(feedback)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

±`¨£¨t²Î¥\¯à¡B¨ÃÁp¡B¦ê±µ¡B°j±Â¡B½d¨Ò¡GZero-order hold(®É°ì)

 

 

 

¤­¡B½d¨Ò¡GZero-order hold(®É°ì)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

±`¨£¨t²Î¥\¯à¡B¨ÃÁp¡B¦ê±µ¡B°j±Â¡B½d¨Ò¡GZero-order hold(®É°ì)

 

 

¨  ¹Ï¬°Zero-order hold¤§¨t²Î¤è¶ô¹Ï¡AÀ³¥Î©óÃþ¤ñ»P¼Æ¦ì¨t²Î¶¡°T¸¹¤§Âà´«¡C»P³]©w¨ú¼Ë²v¡C¨ä¤¤T¬°°T¸¹¨ú¼Ë¶g´Á®É¶¡¡C

½d¨Ò¡GZero-order hold(ÀW°ì¡BÂಾ¨ç¼Æ)

¨  ¹Ï­pºâ¨t²Î¤§Âಾ¨ç¼Æ»P¯ß½ÄÅTÀ³¡C

¸Ñ¡GZero-order hold

¨  ¥Ñ¤è¶ô¹Ï¤§¬[ºc¥i±o

 

¨  ÀW°ìÀ³¥Î¨C¤@¨t²Î¤è¶ô¤§°ò¥»©w¸q

 

¨  ®É°ì±o

 

¨  ¯ß½ÄÅTÀ³¬°

 

¨   ´I¤óÂà´««á±oÂಾ¨ç¡A

 


 

²Ä¥|¸` ¶Ç¿é¤¤¤§°T¸¹¥¢¯u(Signal Distortion in Transmission)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  °T¸¹¶Ç¿é¨t²Î¬O¥Ñ¤@¹q¤l³q¹D(channel)±N°T¸¹¥Ñ¤@¸ê°T·½¶Ç¦Ü¥Øªº¦a¡C

¨  ¶Ç¿é¹Lµ{·|¦³¥¢¯u»P¤zÂZ¡A­º¥ý§Ú­Ì²³æ¤@¨Ç¥¢¯u»P«D¥¢¯u¤§¶Ç¿é±¡§Î

¤  µL¥¢¯u¶Ç¿é(Distortionless Transmission)

¤  ½u©Ê¥¢¯u(Linear distortion)

¤  ¦h­«¸ô®|¥¢¯u(Multipath distortion)

¤  «D½u©Ê¥¢¯u(Nonlinear distortion)

 

 

¤@¡BµL¥¢¯u¶Ç¿é(Distortionless Transmission)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ­Y±µ¦¬°T¸¹»P­ì©l°T¸¹¥u¦³¤j¤p¤£¦P»P®É¶¡©µ¿ð¡AºÙµL¥¢¯u¶Ç¿é¡C

 

¨  ÀWÃÐ

 

¨  ©Ò¥HÂಾ¨ç¼Æ

 

¨  Âಾ¨ç¼Æ

¤  µL¥¢¯u¶Ç¿é

 

¤  ®¶´T¥¢¯u¶Ç¿é

 

 

¤  ©µ¿ð¥¢¯u¶Ç¿é

 

 

¤G¡B½u©Ê¥¢¯u(Linear distortion)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ·í¨C¤@°T¸¹¤À¶q¤§®É¶¡©µ¿ð»P°T¸¹¦¨½u©ÊÃö«Y«hºÙ½u©Ê¥¢¯u¡C

 

¨  ¨Ò¡G©T©w¬Û¦ì²¾

 

¤  tg¡GºÙ¸s©µ¿ð(group delay)

¤  td¡GºÙ¬Û©µ¿ð(phase delay)

 

¨  Test signal x(t) = cos w0t + 1/3 cos 3w0t + 1/5 cos 5w0t

¤  Test signal with amplitude distortion (a) low frequency attenuated; (b) high frequency attenuated

a)(Åܤp)cos w0t + 1/3 cos 3w0t + 1/5 cos 5w0t

b)cos w0t + 1/3 cos 3w0t + (Åܤp) cos 5w0t

 

¤  Test signal with constant phase shift q = -90¢X

 

 

¤T¡B©T©w¬Û¦ì²¾¡G½u©Ê¥¢¯u(Linear distortion)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  °²³]°T¸¹

 

¨  ¸g¥Ñ©T©w¬Û¦ì²¾(£r)³q¹D

 

 

¥|¡Bµ¥¤Æ¾¹(Equalization)·§©À

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ³]­p¤@¨t²Î¨Ó¸ÉÀv³q¹D¤§¥¢¯u²Ó²{¶H¡A¨Ï±µ¦¬µL¥¢¯u!!!

¨  ´Á±æ¾ãÅ餧¨t²ÎÂಾ¨ç¼Æ

 

 

¤­¡Bµ¥¤Æ¾¹(Equalization)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ¾ãÅ餧¨t²ÎÂಾ¨ç¼Æ

 

¤  ©Ò¥H

 

¤  ±`¨£³]­pµ¥¤Æ¾¹¤§¤èªk¬°¨Ï¥Î

¤  Tapped-delay-line

¤  ©Îtransversal filter

¤  ¦p¡G

 

¨  Tapped-delay-line equalizer ©Îtransversal filter

¤  ª½±µ¥Ñ¤U¹Ï¥i¼g

 

¤  Âಾ¨ç¼Æ

 

¤  ¾ã²z«á¡A­Y¦³2¢Û+1­Ó«Y¼Æ

 

 

¤»¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  °²³]¦³¤@¥¢¯u³q¹D¡]¨â¦h­«¸ô®|¡^

 

¤  ¨Dµ¥¤Æ¾¹¡H

¤  ³q¹DÂಾ¨ç¼Æ

 

¤  µ¥¤Æ¾¹Âಾ¨ç¼Æ

 

 

¦h­«¸ô®|¥¢¯u(¥HTAPPED-DELAY³]­p)

 

¨  µ¥¤Æ¾¹¤§Âಾ¨ç¼Æ¬°

 

¨  ¥H®õ°Ç®i¶}ªñ¦ü¬°

 

¨  ¨ú¤T¶µ

 

¨  TAPPED-DELAY³]­p

 

 

¤C¡B«D½u©Ê¥¢¯u

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ¦p¹Ï¬°«D½u©Ê¨t²Î

¨  ¦p¡G

 

¨  °²³]¿é¤J

 

¨  ¨t²Î¿é¥X

 

¨  ²£¥Í¦h¦¸¿Óªi¥¢¯u¡A¤U¬°¤G¦¸¿Óªi¥¢¯u¶q

 

 

 

¤K¡B§í¨î¾¹companding(compressing & expanding)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

µL¥¢¯u¶Ç¿é¡B½u©Ê¥¢¯u¡B©T©w¬Û¦ì²¾¡Bµ¥¤Æ¾¹·§©À¡Bµ¥¤Æ¾¹¡B¦h­«¸ô®|¥¢¯u¤§µ¥¤Æ¾¹¡B«D½u©Ê¥¢¯u¡B§í¨î¾¹

 

 

¨  ¦p¦óÁקK¨t²Î«D½u©Ê¤¸¥ó¹ï½ÕÅܤ§¼vÅT¡H

¤  ºÉ¶q¨Ï°T¸¹¸¨©ó½u©Ê°Ï¡A¦]¦¹¦­´Á¹q«H¨t²Î±`¨Ï¥Î§í¨î¾¹(companding)ÁקK¦]­¼¿n¤¸¥ó(crossproduct)¤§«D½u©Ê²{¶H¡A³y¦¨¨t²Î¦ê­µ²{¶H(cross talk) ¡C

¤  compressor¡G¥ý±N¤j°T¸¹§í¨î(°I´î)

¤  expandor¡G±N¤j°T¸¹ÁÙ­ì(©ñ¤j)

¤  compressing »P expanding¦XºÙ§í¨î¾¹companding

 


 

²Ä¤­¸` ¶Ç¿é·l¥¢¡B¼W¯q»P¤À¨©(dB)(Transmission Loss¡BGAIN and Decibels)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ¶Ç¿é·l¥¢©Î¼W¯q©w¸q

 

¨  ¥H¤À¨©(dB)©w¸q

 

 

dBW & dBM

¨  ­Y±N¿é¤J¥\²v¥H©T©w¥\²v¡A«h¥i©w¸q¬°¥\²v¶q´ú³æ¦ì

¤  dBW¡G¥H¤@¥Ëw¬°¤ñ¸û³æ¦ì¡A

 

¤  dBM¡G¥H¤@·L¥Ëmw¬°¤ñ¸û³æ¦ì

 

 

 

¤@¡B¨t²Î¥\²v¼W¯q(Power gain)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ¥HdBªí¥Ü¨t²Î¼W¯q»P°T¸¹¥\²v±o

 

¨  ¨t²Î¼W¯q»P¨t²ÎÂಾ¨ç¼Æ¤§Ãö«Y

 

¨  dBªí¥Ü¨t²ÎÂಾ¨ç¼Æ

 

 

¤G¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ¶Ç¿é·l¥¢¡A¦b³q°T¨t²Î¤¤¬O³]­p¤¤Ä~¾¹¨Ó§JªA¡A¦b¤@¬q¶Ç¿é¶ZÂ÷«á³]¸m¤@¤¤Ä~¾¹(©ñ¤j°T¸¹)

 

¨  «h³Ì«á¦¬¨ì¤§°T¸¹¥\²v¬°(°²³]g2»Pg4¬O¬°¤¤Ä~¾¹)

 

 

¨  ±`¨£¶Ç¿é·l¯Ó

 

¤T¡B¥úÅÖ(Fiber Optics)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ¥úÅÖ³q°T¬O¥H¥úªi¬°¶Ç¿é´C¤¶¡C

¤  ¥ú¦b¤¶½è¤º¥þ¤Ï®g²{¶H¡A±N°T¸¹¥ÑA¶Ç»¼¦ÜB¡C

¤  ¤j³¡¥÷¥ú³q°T¨t²Î¬°¼Æ¦ì³q°T¨t²Î¡A¦]¬°Ãþ¤ñ¤§¥ú°T¸¹½ÕÅÜ»P¸Ñ½ÕÅܤ£©ö¡C

¤  ¼Æ¦ì«h¥i³z¥Ñ¥ú¤§on-off½ÕÅÜ¡C

¨  ¥ú¤§´C¤¶à¥úÅÖ¡A¶Ç¿é«¬ºA¦³

¤  ³æ¼ÒºA(single-mode)

¤  ¦h¼ÒºA(multi-mode¡Astep-index)

¤  ¦h¼ÒºA(multi-mode¡Agraded-index)

¨  ³æ¼ÒºA¡ALight propagation down a single-mode step-index fiber

¨  ¦h¼ÒºA¡ALight propagation down a multimode step-index fiber

 

¨  ¦h¼ÒºA¡A Light propagation down a multimode graded-index fiber

 

 

¥|¡B®gÀW¶Ç¿é

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ª½µø¶Ç¿é(line-of-sight propagation) ¡A¤@¯ë¦bÀW±a100MH¥H¤W¤§¹qºÏªiÀW±a¡C

¨  ¦Û¥ÑªÅ¶¡·l¯Ó(free-space-loss) ¡G¥H²y­±´T®g¤§·l¯Ó

 

¤  ¨ä¤¤

 

¤­¡Bª½µø¶Ç¿é(line-of-sight propagation)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  ¤@¯ëª½µø¶Ç¿é¤§·l¯Ó

 

¤»¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î(Satellite relay system)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¨t²Î¥\²v¼W¯q¡B¶Ç¿é·l¥¢»P¤¤Ä~¾¹¡B¥úÅÖ¡B®gÀW¶Ç¿é¡Bª½µø¶Ç¿é¡B½d¨Ò :½Ã¬P¤¤Ä~¨t²Î

 

 

¨  Uplink frequency=6GHz¡BDownlink freq.=4GHz, ¤¤Ä~¿é¥X=18dBw

¤  °²³]¶Ç¿é·l¯Ó¬°

 

¤  ¿é¤J¥\²v35dBW

¤  ¨D¿é¥X¥\²v

¸Ñ¡G½Ã¬P¤¤Ä~¨t²Î¡A

¨  À³¥Î

 

¤  ¨D±ouplink loss

 

¤  Downlink loss

 

¤  ¤¤Ä~¾¹¿é¤J35dB+55dB-199.1dB+20dB=-144.1dBW

¤  ¿é¥X¥\²v18dB+16dB-195.6dB+51dB=-110.6dBW

 

 


 

²Ä¤»¸` Âoªi¾¹»PÂoªi(Filter and Filtering)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  ³q°T¨t²Î¦s¦b³\¦hÂoªi¾¹¡C¬°¤F±N©Ò©Ó¸ü¤§¸ê°T¥Ñ¤£·Q­n¤§¤º®e¤¤¨ú¥X¡C¦p¡G

¤  ¤zÂZ¡G¤@¯ë«ü¥Ñ«D°T¸¹¥»¨­¤§¨ä¥L¨Ó·½¡A¦]°T¸¹¤§²V¦X³y¦¨±µ¦¬°T¸¹¤§·l¥¢¡C

¤  Âø°T¡GÂø°T¥i¯à¬O¼öÂø°T©Î¨ä¥L­I´ºÂø°T¡A¦]¥[¦Ü°T¸¹¤W¾É­P°T¸¹¤§¸ÑªR¯à¤OÅÜ®t¡C

¤  ¥¢¯u¡G¥Ñ°T¸¹¥»¨­¡A³Q¦UºØ½u©Ê©Î«D½u©Ê¤§¨t²ÎÅTÀ³(©Î³q¹D)¡A³y¦¨±µ¦¬°T¸¹¤§Åܲ§»P·l¥¢¡C

¨  Âoªi«h¬OÀ³¥Î¦UºØ°T¸¹³B²z¤è¦¡²¾°£¤W­z¤zÂZ»PÂø°T¡C

 

¤@¡BTransfer function of a ideal bandpass filter

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  Ideal filter¡G«üªº¬O³B²zÀW±a¤º°T¸¹µL¥¢¯u(distortionless)¡A¦b¨ä¥LÀW±a¤º«h¬°0¡C

¨  ¤U¹Ï¬° ideal bandpass filter¡C

 

¤G¡B²z·QÂoªi¾¹(ideal filter)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  ¥i¥H¤À¬°

¤  Lowpass filter¡G¦p¤U¦¡

 

¤  Highpass filter

¤  Band-rejection filter

¤  Band-pass filter¡G¤U¦Cªí¥Ü¬°±a³q¤§Âಾ¨ç¼Æ»PÅTÀ³

 

¤  ¨ä¤¤¡ABºÙÀW±a¼e ¡C

 

 

¨  Ideal lowpass filter (a) Transfer function (b) Impulse response

(a)  

(b)  

 

 

¤T¡B¦³­­ÀW¼e»P¦³­­®É¶¡(Bandlimiting and Timelimiting)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  ­Y¦³¤@°T¸¹¤§ÀWÃЬ°

 

¤  ºÙ¦³­­ÀW¼e°T¸¹

¨  ­Y¦³¤@°T¸¹¤§®É°ì¬°

 

¤  ºÙ¦³­­®É¶¡°T¸¹

¨  §¹¬ü¤§¦³­­ÀW¼e»P¦³­­®É¶¡°T¸¹¡A¬Ò¤£¥i¯à¦s¦b¡C

¤  ¦]¬°§¹¬ü®É¶¡¦³­­·|³y¦¨µL­­¤§ÀW¼e»Ý¨D¡C

¤  §¹¬üÀW¼e¦³­­·|³y¦¨µL­­¤§®É¶¡©µ®i»Ý¨D¡C

 

 

¥|¡B¨å«¬±a³qÂoªi¾¹(Typical amplitude ratio of a real bandpass filter)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  Passband¡G±a³q±a¡A¤@¯ë¬°©ñ¤j­¿¡A¥i¯à¦³º§º¬(ripple)¡A¥Ñ³Ì¤j©ñ¤j­¿²vK¦Ü1/2K¤§½d³òºÙ3dBÀW¼e¡C¦p¹ÏfH-fL¡C

¨  Stopband¡G±a¤î±a¡A¿é¥X¬°0¡C

 

¤­¡B¹ê»ÚÂoªi¾¹(real filter)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  ¥Ñ¤W¹Ï¥i²³æ°²³]Âoªi¾¹Âಾ¨ç¼Æ¬°

 

¨  À³¥ÎButterworthj filter ³]­p§Þ³N

 

¤  ¨ä¤¤

 

¤  n¬°©Ò¨Ï¥Î¤§Âoªi¾¹¶¥¼Æ¡A¥N¤J«á¥i±oÂಾ¨ç¼Æ

 

 

¤»¡B±`¨£Âoªi¾¹³]­p¤èªk

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  Butterworth¡G¦³¥­©Z¤§±a³q±a¡C

¨  Bessel¡Bmaximally linear phase¡G¦³³Ì¦n¤§±a³q±a½u©Ê¬Û¦ì¡C

¨  Equal ripple filter¡G¦³¸û¤p¤§Âಾ±a¡C¤À

¤  Chebyshev filter(I¡BII)

¤  Elliptic filter

¨  Butterworth¡BBessel¡Bmaximally linear phase¡BEqual ripple filter(Chebyshev filter(I¡BII)¡BElliptic filter)

¤  ¥i¥HÀ³¥ÎMATLAB toolbox¡A¤F¸Ñ¤W­zÂoªi¾¹¥\¯à®t²§¡C

¨  ©Ò¦³Âoªi¾¹³]­p®É¡A

¤  ¤@¯ë¨Ï¥Î¥D°Ê¦¡(active)³]­p¡A

¤  ¨Ã¬°ÁקK¨Ï¥Î¹q·P(ªÅ¶¡»P­«¶q)·|¨Ï¥Îswitched-capacitor filter§Þ³N¡C

 

Bode diagram for Butterworth LPF

 

¤C¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

¨  ¨B¶¥ÅTÀ³

 

¨  ¤@¶¥Âoªi¾¹¤§¿é¥XÅTÀ³

 

¨  ²z·Q§C³q¤§¿é¥XÅTÀ³

 

¨  ©w¸q

 

¨  «h²z·Q§C³q¤§¿é¥XÅTÀ³

 

 

¤K¡BResponse of an LPF

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

²z·Q±a³qÂoªi¡B²z·QÂoªi¾¹¡B¦³­­ÀW¼e»P¦³­­®É¶¡¡B¨å«¬±a³qÂoªi¾¹¡B¹ê»ÚÂoªi¾¹¡BÂoªi¾¹³]­p¤èªk¡B¯ßªiÅTÀ³»P¤W¤É®É¶¡¡BResponse of an LPF

 

 

Pulse response of an ideal LPF

¨  ·í¤èªi¯ß½Ä³q¹LÂoªi¾¹®É¡A¤èªi¯ß½Ä¥¢¯u±¡§Î»PÂoªi¾¹ÀW±a¼e¦³Ãö¡CB£n>2¥i³q¹L°ò¥»§Îª¬¡A B£n<<2·|³y¦¨©µ­«¥¢¯u¡C

Pulse resolution of an ideal LPF. B = ½t

¨  B£n>2³q¹L°ò¥»§Îª¬¡A B£n<<2³y¦¨¥¢¯u¡C

¨  ¦]¦¹Âoªi¾¹³Ì¤j¤§¸ÑªR²v©w¬°B = ½t¡Bt= 2B

 

¨B¶¥ÅTÀ³¤ÀªR(Step response of ideal and first-order LPFs)

¨  ½Ðª`·N²z·Q¡B¤@¶¥Âoªi¾¹¤§ÅTÀ³¡C

¤  Setup time¡G·í¿é¥X¦Ü0.9(íºA­È)®É¤§®É¶¡¡C

¤  Ripple¡GíºA­È¤§º§º¬¶q¡C

¤  Causal¡G¥¼¿é¤J®É¿é¥X¬°0¡C

 


 

²Ä¤C¸` ¥¿¥æÂoªi¾¹»P§Æ§B¯SÂà´«(Quadrature Filters and Hilbert Transforms)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

§Æ§B¯SÂà´«©Ê½è¡B½d¨Òa cosine Signal¡B½d¨Òa Rectangular Signal

 

 

¨  ¥¿¥æÂoªi¾¹(Quadrature Filters )¡G¥þ³qÂoªi¾¹¡A¥u¥¿ÀW²v¤À¶q¬Û¦ì²¾-90«×¡B­tÀW²v¤À¶q¬Û¦ì²¾90«×

¤  Âಾ¨ç¼Æ

 

¤  ¯ß½ÄÅTÀ³

 

¨  §Æ§B¯SÂà´«( Hilbert Transforms)¡G¥ô¦ó°T¸¹³q¹L¥¿¥æÂoªi¾¹¡AºÙ¤§¡C

 

 

¤@¡B§Æ§B¯SÂà´«©Ê½è(Property of Hilbert Transforms)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

§Æ§B¯SÂà´«©Ê½è¡B½d¨Òa cosine Signal¡B½d¨Òa Rectangular Signal

 

 

¨  ¥ô¦ó°T¸¹¤§§Æ§B¯SÂà´««á¤§®¶´TÀWÃлP¨ä­ì®¶´TÀWÃЬۦP¡C

¨  ­Y

¨  ¥ô¦ó°T¸¹°T¸¹»P§Æ§B¯SÂà´«¤§°T¸¹¬°¥¿¥æ

 

¤G¡B½d¨Ò Hilbert transform of a cosine Signal

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

§Æ§B¯SÂà´«©Ê½è¡B½d¨Òa cosine Signal¡B½d¨Òa Rectangular Signal

 

 

¨  °T¸¹

¤  ¨DHilbert transform ¡H

¨  ANS¡G

 

¤  IFTà

 

¤T¡B½d¨Ò: Hilbert transform of a Rectangular Signal

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

§Æ§B¯SÂà´«©Ê½è¡B½d¨Òa cosine Signal¡B½d¨Òa Rectangular Signal

 

 

¨  °T¸¹

 

¤  ¨DHilbert transform ¡H

¨  ANS¡G

 

¤  IFTà

 

 

Hilbert transform of a rectangular pulse (a) Convolution; (b) Result

 


 

²Ä¤K¸` ¬ÛÃö¨ç¼Æ»PÀWÃбK«×(Correlation and Spectral Density)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¥\²v°T¸¹¤§¬ÛÃö©Ê¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê¡BÀWÃбK«×¨ç¼Æ¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

 

 

¨  ¬ÛÃö¨ç¼Æ»PÀWÃбK«×¬O¤ÀªR°T¸¹»P¨t²Î¤§¥t¤@±`¥Î¤§¤èªk¡C

¨  ¬ÛÃö¨ç¼Æ(Correlation)°µFourier transform¡A±o¨ìÀW°ìªí¥ÜªkàÀWÃбK«×(Spectral Density)¡C¥i¥H¥Î©ó¤ÀªR°T¸¹¤§¥\²v¡C

¨  ÀWÃбK«×(Spectral Density)¬O¥iÀ³¥Î©ó¦UºØ°T¸¹¤§¤ÀªR¡A§Y¨Ï°T¸¹¬°µLªkFourier transform ¡A¨Ò¦p¡GÀH¾÷°T¸¹¡C

 

¤@¡B¥\²v°T¸¹¤§¬ÛÃö©Ê(Correlation of power Signals)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¥\²v°T¸¹¤§¬ÛÃö©Ê¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê¡BÀWÃбK«×¨ç¼Æ¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

 

 

¨  °²³]v(t)¬°¥\²v°T¸¹¡A«h¨ä¥­§¡¥\²v(average power)

 

 

¤  ®É¶¡¥­§¡©w¸q¬°

 

¤  ¦³¤U¦C©Ê½è

 

¨  ºÙ¯Â¶q­¼(scalar product)

 

Schwarz¡¦s inequality

 

¨  ÃÒ¡G°²³]

 

¤  ¥O

 

¤  ±oÃÒ

 

¨  ¤¬¬ÛÃö¨ç¼Æ(crosscorrelation)

 

¤  ¤¬¬ÛÃö¶q¤p©ó­Ó§O°T¸¹¥\²v

 

¤  ¨â°T¸¹¤§¤¬¬ÛÃö»P¤è¦VµLÃö

 

¨  ¦Û¬ÛÃö¨ç¼Æ(autocorrelation)

 

¤  t=0¦Û¬ÛÃö¡Aµ¥©ó¥­§¡¥\²v

 

¤  t=0¦Û¬ÛÃö¡A¬°³Ì¤j

 

 

¤  ¦Û¬ÛÃö»P¤è¦VµLÃö

 

¨  °²³]

 

¤  ¦Û¬ÛÃö¬°

 

¤  ­Y¤¬¬ÛÃö¨ç¼Æ¡AµLÃö

 

¤  «h°T¸¹¥\²vÃö«Y¦p¤U¡G

 

½d¨Ò¡GCorrelation of phasors and sinusoids

¨  ©w¸q

 

¨  ¥O

 

¤  ¨D¦¹phasors  ¤§¬ÛÃö¨ç¼Æ¡C

 

¤  »P sinusoids¤§¦Û¬ÛÃö¨ç¼Æ¡C

¸Ñ¡G Correlation of phasors and sinusoids

¨  ¤¬¬ÛÃö¨ç¼Æ

 

¨  ¦Û¬ÛÃö¨ç¼Æ

 

¨  ­Y¥u¬°sinusoids

 

 

¤G¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê(Correlation of Energy Signals)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¥\²v°T¸¹¤§¬ÛÃö©Ê¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê¡BÀWÃбK«×¨ç¼Æ¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

 

 

¨  °T¸¹¯à¶q©w¸q

 

¨  ¤¬¬ÛÃö©w¸q

 

¤  ª`·N¿n¤À¤§¤W¤U­­(¯à¶q»P¥\²v°T¸¹¤£¦P)

¤  ¨ä¾l©w¸q

 

¤  ºP¿n¤§©w¸q

 

¤  ¦]¦¹

 

¨  ¦Û¬ÛÃö»PÀWÃбK«×Ãö«Y

 

¨  ¤¬¬ÛÃö»PÀWÃбK«×Ãö«Y

 

¨  ÀW°ì¤§Schwarz¡¦s inequality

 

 

¬ÛÃö¨ç¼Æ

¨  °T¸¹¤§¦Û¬ÛÃö»P¤¬¬ÛÃö¥iÀ³¥Î©ó

¤  ¹Ï°TÃѧO(Pattern Recognition)

¤  °T¸¹°»´ú

¤  ¸Ñ½ÕÅÜ

¤  ¤Ç°tÂoªi¾¹

¤  °T¸¹¤§ÀWÃбK«×¡G°T¸¹¬ÛÃö¨ç¼Æ¤§FT¬°¨äÀWÃбK«×¨ç¼Æ¡C

 

 

¤T¡BÀWÃбK«×¨ç¼Æ(Spectral Density Functions)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¥\²v°T¸¹¤§¬ÛÃö©Ê¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê¡BÀWÃбK«×¨ç¼Æ¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

 

 

 

 

¨  ­YH(f)¬°Âoªi¨t²ÎÂಾ¨ç¼Æ«h¿é¥X¥\²vÀWÃÐ

 

¨  ­YÂoªi¾¹ÀW¼e«Ü¤p¡A¥Bµ¥¼W¯q(1)

 

 

Interpretation of spectral density functions

 

Spectral Density Functions

¨  ©Ò¥H¦Û¬ÛÃö¨ç¼Æ¬°¥\²v±K«×ÀWÃФ§¤Ï´I¤óÂà´«

 

¨  ¥\²v±K«×ÀWÃлPÀWÃÐÃö«Y

 

¨  ­Y¬°¶g´Á°T¸¹

 

¤  «h¥\²vÀWÃбK«×

 

½d¨Ò¡G

¨  °²³]°T¸¹

 

¨  ¨t²ÎÂಾ¨ç¼Æ¬°

 

¨  ¨D¡G

¤  X(t)¤§¯à¶qÀWÃбK«×¡H

¤  ¿é¥X¤§ÀWÃбK«×¡H

¤  X(t)»P¿é¥X¤§¯à¶q¡H

¤  ¿é¥Xy(t)¡H

¸Ñ¡G

¨  X(t)¤§¯à¶qÀWÃбK«×

 

¨  ¿é¥X¤§ÀWÃбK«×

 

¨  X(t)»P¿é¥X¤§¯à¶q

 

¨  ¿é¥Xy(t)

IFTà

 

 

¥|¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

¬ÛÃö³æ¤¸

¾Ç²ß¥Ø¼Ð¡B½u©Ê«D®ÉÅܨt²Î¡B¤è¶ô¹Ï¤ÀªR¡B¶Ç¿é¤¤°T¸¹¥¢¯u¡B¶Ç¿é·l¥¢¼W¯q»P¤À¨©¡BÂoªi¾¹»PÂoªi¡B¥¿¥æÂoªi¾¹¡B¬ÛÃö¨ç¼Æ»PÀWÃбK«×

¥Ø¿ý

¬ÛÃö¸ê®Æ

¥\²v°T¸¹¤§¬ÛÃö©Ê¡B¯à¶q°T¸¹¤§¬ÛÃö©Ê¡BÀWÃбK«×¨ç¼Æ¡B½d¨Ò¡GComb Filter(®Þ«¬Âoªi¾¹)

 

 

¨  ¦p¹Ï¤§Âoªi¾¹

¨  ¨D

¤  ¯ß½ÄÅTÀ³¡H

¤  Âಾ¨ç¼Æ¡H

¨  ANS¡G

¤  ¯ß½ÄÅTÀ³

 

¤  Âಾ¨ç¼Æ

 

¨  À³¥Î¡GComb Filter

¨  Âoªi¾¹¤§¥\²vÀWÃÐ

 

¨  ­Y¿é¤J¥\²v±K«×¤wª¾¡A«h¿é¥X¥\²v±K«×

 

¨  ¿é¥X¤§¦Û¬ÛÃö¨ç¼Æ

 

¤  ¦]¬°

 

¤  ©Ò¥H