§@ªÌ¡G ³¯¬L§»
¸q¦u¤j¾Ç ¹q¤l¤uµ{¨t
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡BÀH¾÷¹Lµ{¡B«Å|©Ê½è»P½ÕÅÜ¡BÂø°T¡B¥ÕÂø°T¶q´ú¨t²Î¡BÃþ¤ñ°òÀW±a¶Ç¿é¡BPulse detection and matched filters |
²Ä¤»³¹ ÀH¾÷°T¸¹»PÂø°TRANDOM SIGNALS AND NOISE
²Ä¤G¸` ÀH¾÷¹Lµ{(Random Processes)
¤@¡B ²Îp¥§¡»P¬ÛÃö¨ç¼Æ(Ensemble Average and correlation Function)
¤G¡B ¦Û¬ÛÃö¨ç¼Æ(Autocorrelation function)
¤T¡B ¤¬¬ÛÃö¨ç¼Æ(Cross correlation function)
¥|¡B ½d¨Ò¡GÀH¾÷°T¸¹¤§¥§¡È»P¦Û¬ÛÃö¨ç¼Æ
¤¡B ½d¨Ò¡GRandomly Phased Sinusoid
¤»¡B ÀRºA¹Lµ{(Ergodic and stationary Processes)
¤C¡B ¼s¸qÀRºA°T¸¹Wide-sense stationary (WSS)
¤K¡B ½d¨Ò¡G random digital wave
¤E¡B °ª´µÀH¾÷¹Lµ{Gaussian Processes
¤Q¤@¡B ¥\²vÀWÃÐ(Power spectrum)
¤Q¤G¡B
Wiener-Kinchine theorem
¤Q¤T¡B
Finite-duration signal or truncated random signal
¤Q¥|¡B ½d¨Ò¡G Random telegraph Wave
²Ä¤T¸` «Å|©Ê½è»P½ÕÅÜSuperposition and Modulation
¤T¡B °T¸¹½u©Ê¦X¦¨(linear combination)
¥|¡B ¦Û¬ÛÃö¨ç¼Æ¡B¥\²vÀWÃСB¥§¡¥\²v¤§«Å|©Ê½è(Superposition)
¤¡B «D¦P½Õ°T¸¹(incoherent signal)
¤C¡B Âoªi«á¤§ÀH¾÷°T¸¹(Filtered Random Signals)
¤E¡B ½d¨Ò¡G Random telegraph Wave
¤Q¡B ½d¨Ò¡G Hilbert Transform of a random signal
¤G¡B
Thermal Noise and Available power
¤T¡B ¥i¥Î¥\²v(Available power)
¤¡B Âø°T·Å«×Noise temperature
¤K¡B Âø°Tµ¥®ÄÀW¼eNoise Equivalent Bandwidth
²Ä¤¸` ¶q´úÀ³¥Î¡G¥ÕÂø°T¶q´ú¨t²ÎSystem Measurements using white noise
¤@¡B ¶q´úÀ³¥Î¡GAmplitude Response
¤G¡B ¶q´úÀ³¥Î¡GImpulse Response
¤T¡B Âø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é...
¤¡B °T¸¹Âø°T¤ñ(Signal to noise ratio)
²Ä¤»¸` Ãþ¤ñ°òÀW±a¶Ç¿é(Analog Signal Transmission)
¤»¡B Âø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿éBaseband Pulse transmission with noise
²Ä¤C¸`
Pulse detection and matched filters
¤G¡B ¤Ç°tÂoªi¾¹Matched filters
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡B¬Û¦ì»PÀW²v½ÕÅÜ¡B¶Ç¿éÀW¼e»P¥¢¯u¡B²£¥Í»P°»´úFM»PPM¡BÀW²v°»´ú¡B¤zÂZ(interference) |
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡BÀH¾÷¹Lµ{¡B«Å|©Ê½è»P½ÕÅÜ¡BÂø°T¡B¥ÕÂø°T¶q´ú¨t²Î¡BÃþ¤ñ°òÀW±a¶Ç¿é¡BPulse detection and matched filters |
¨ ©w¸q¤@ÀH¾÷¹Lµ{(random process)¤§´Á±æ(mean)»P¦Û¬ÛÃö¨ç¼Æ(autocorrelation function)¡C¨Ã´yzÀRºA(stationary)»P°ª´µ(gaussian)¹Lµ{¡C
¨ ÁA¸ÑÀH¾÷(ergodic)¹Lµ{¤§ÀH¾÷°T¸¹®É¶¡¥§¡(time average)»P¹êÅ祧¡(ensemble average)¤§Ãö³s¡C
¨ 给©wÀRºAÀH¾÷°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ(autocorrelation function)¡Apºâ§¡¤èÈ¡BÅܲ§¼Æ»P°T¸¹¥\²v¡C
¨ À³¥Î«Å|©w²z(superposition)¡B½ÕÅÜ(modulation)¡BÂoªi(filtering)¡Apºâ°T¸¹¤§¥\²vÀWÃÐ(power spectrum)¡C
¨ µ¹¤©Âø°T·Å«×(noise temmerature)¡Apºâ¥ÕÂø°T¤§¦Û¬ÛÃö¨ç¼Æ»P¥\²v±K«×ÀWÃСC
¨ ¦³Âø°T¿é¤J®É¡ApºâÂoªi¾¹¤§Âø°TÀW¼e(noise bandwidth)¡A¿é¥X¥\²vÀWÃлPÁ`¿é¥X¥\²v¡C
¨ ´yz¦b¦óª¬ªp¤U¤§¥¿½T°T¸¹Âø°T¤ñ(signal-to-noise ratio)¡C
¨ ¤ÀªR¨ãÂø°T(noise)°òÀW±a(baseband)Ãþ¤ñ¶Ç¿é¨t²Î(transmission)¤§©Ê¯à¡C
¨ ¦b¥Õ¦âÂø°T¤U¡Apºâ°»´ú¯ß½Ä¤§³Ì¨ÎÂoªi¾¹(optimum)¡C
¨ ¤ÀªR¨ãÂø°T¯ß½Ä¶Ç¿é¨t²Î¤§©Ê¯à¡C
¨ ¤@ÓÀH¾÷°T¸¹¡A¥i¥H¬O¤@ÀH®É¶¡µo¥Í¤§ÀH¾÷¹q¤l³B²z¹Lµ{¡C¤@¯ëºÙ¬°ÀH¾÷¹Lµ{(stochastic process) ¡C
¨ ·íÀH¾÷¤§¯S©Ê¥[¤J®É¶¡¦]¯À·|¨Ï°ÝÃD½ÆÂø¤Æ(°²¦p²Îp¯S©Ê·|ÀH®É¶¡ÅܤÆ)¡C
¨ ©¯¦n¡A¦b³q°T¨t²Î¤¤¤j³¡¥÷¤§ÀH¾÷¹Lµ{¥i¥Hµø¬°ÀRºA¹Lµ{(stationary or ergodicity process) ¡C
¤ ÀRºA¹Lµ{¡G²Îp¯S©Ê¤£ÀH®É¶¡ÅܰʦӧïÅÜ¡C
¨ ÀH¾÷¹Lµ{(stochastic process) ¡G±N¹êÅ礧µ²ªG¬M¦Ü¤§¤@®É¶¡¤§¨ç¼Æ¡C
¨ Ensemble¡G©Ò¦³¤£¦P¹êÅç©Ò§Î¦¨¤§®É¶¡¨ç¼Æ¡A¦¬¶°¦b¤@°_¡AºÙEnsemble¡C
¨ Sample function¡G¹ï¬Y¤@¦¸¹êÅç©Ò¹ïÀ³¤§¤@®É¶¡¤§¨ç¼Æ¡AºÙ¨ú¼Ë¨ç¼Æ
¨
Waveforms in an ensemble v(t,s)
¨ ¦Û¬ÛÃö¨ç¼Æ¡G°T¸¹¦Û¤v»P¦Û¤v¤§®É¶¡¬ÛÃö©Ê©w¸q¬°
¨ ÀH¾÷ÅܼƤ§¨ç¼Æ¡G°²³]¦³¤@°T¸¹¬O¤@ÀH¾÷ÅܼÆX¤§®É¶¡¨ç¼Æ¾÷²v±K«×¨ç¼ÆpX(X) ¡C«h
¤
¤ ¦Û¬ÛÃö¨ç¼Æ
¨ ¤@¯ë§ÚÌ·|§Æ±æ¤ÀªR¨âÀH¾÷¹Lµ{¤§Áp¦X²Îp(joint statistic)Ãö«Y
¤ Y¨âÀH¾÷¹Lµ{²Å¦X¤U¦¡
¤ ºÙ¤£¬ÛÃö(Uncorrelated)
¨ °²³]¦³¨âÀH¾÷°T¸¹Ãö«Y¦p¤U¡G
¨ À³¥Î´Á±æÈ¡B¬ÛÃö¨ç¼Æ¤§©w¸q¡A¨D¨â°T¸¹¤§
¤ ensemble average¡C
¤ Auto-correlation function¡C
¤ Cross-correlation function¡C
¨ v(t)¤§´Á±æÈ
¨ v(t)¤§¦Û¬ÛÃö¨ç¼Æ
¨ ¦P²zw(t)
¨ ¤¬¬ÛÃö¨ç¼Æ
¤ °²¦pX¡BY¬°¿W¥ßÅܼÆ(independence)
¤ «h
¨ °²¦p¦³¤@®¶Àú¾¹¡A®¶´T¬°A¡AÀW²v¬°£so¡A¦ý¤£ª¾¨ä¬Û¦ì¡A¥u¦³¶}±Ò®¶Àú¾¹«áÆ[¹î¨äªi§Î¤~¯à¶q´ú¨ä¬Û¦ì¡C¦¹®É°T¸¹¥iªí¥Ü¬°
¤ ¾ãÅé¦Ó¨¥¡A¥ô¤@¦¸¤§®¶Àúµ²ªG¬Ò¥iµø¬°¨ãÀH¾÷ÅܼƣX¤§ÀH¾÷¹Lµ{
¤ ¨ä¤¤£X¤§¾÷²v±K«×¤À§G¨ç¼Æ(PDF)¥i¥Hµø¬°©ó0~2£k¶¡§¡¤Ã¤À§G¡C
¨D°T¸¹¤§´Á±æÈ»P¦Û¬ÛÃö¨ç¼Æ»P§¡¤èÈ¡C
¸Ñ¡G
¨ £X¤§¾÷²v±K«×¤À§G¨ç¼Æ(PDF)¥i¥Hµø¬°©ó0~2£k¶¡§¡¤Ã¤À§G
¤
¤ ©Ò¥H´Á±æÈ
¨ ¦Û¬ÛÃö¨ç¼Æ
¤ ¥N¤J£\±o¦Û¬ÛÃö¨ç¼Æ
¤ ³Ì«á±o§¡¤èÈ
¨ °T¸¹¤§®É¶¡¥§¡(time average)©w¸q¬°
¨ Y¤@ÓÀH¾÷¹Lµ{¨ä©Ò¦³°T¸¹¤§®É¶¡¥§¡µ¥©ó¾ãÅ饧¡(ensemble average)
¤ ºÙErgodic¡A «h
¨ Ergodic¡A «h
¤ ´Á±æÈ»P®É¶¡µLÃö
¤ ¦Û¬ÛÃö¨ç¼Æ¥u»P®É¶¡¶¡¹j£n¦³Ãö
¨ ¥B¦Û¬ÛÃö¨ç¼Æ¤S¦p¤U©Ê½è¡G
¤ ¤S
¤ Y°T¸¹¬°¶g´Á°T¸¹
¤ ©w¸qÀH¾÷¹Lµ{¤§¥§¡¥\²v¬°
¤ Y°T¸¹¬°stationary Processes
Ergodic ®É
¨ ª`·N¡G§¡¤èȤ£¦P©ó§¡¤è®ÚÈ(rms)
¨ Y¤@°T¸¹¥u¦³´Á±æÈ»P¦Û¬ÛÃö¨ç¼Æ»P®É¶¡µLÃö¡AºÙ¼s¸qÀRºA°T¸¹Wide-sense stationary (WSS) ¡C
¨ ª`·N¡G½Ð¤À¿ë
¤ ÀRºA¹Lµ{Ergodic Processes(strictly in all ensemble average are independent of time)
¤ ¼s¸qÀRºA¹Lµ{Wide-sense stationary (WSS)
¨ °²³]¦p¤U¹Ï¤§ÀH¾÷¤§¼Æ¦ì°T¸¹ªi§Î¡AD¬°©T©w¡ATd»Pai¬°ÀH¾÷ÅܼơC
¨ ¨ä¤¤¨C¤@¼Æ¦ì¯ß½Ä¡A ¥iªí¥Ü¦p¤U¹Ï
¨ °²³]¤£¦P¯ß½Ä¤§®¶´T¬Û¤¬¿W¥ß¡A¥BE[ai]=0¡A¨D¦¹°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ¡H
¸Ñ¡G random digital wave
¨ ¦]¬°¤£¦P¯ß½Ä¤§®¶´T¬Û¤¬¿W¥ß¡A©Ò¥H
¤ ©Ò¥H¤£¦P¬Û³s®É¶¡¤§¯ß½Ä
¤ °²³]¨â¯ß½Ä¬Û³s¤§¾÷²v¬°P(A)
¤ «h
¨ «h
¨ ¦Û¬ÛÃö¨ç¼Æ
¤ ©Ò¥H
¤ ¥§¡¥\²v
¨ ¤@ÓÀH¾÷¹Lµ{¬°©óÀH¾÷ÅܼÆV=v(t)°²¦p©Ò¦³Ãä»Ú(marginal) ¡BÁp¦X(joint) ¡B±ø¥ó(condition)¤§¾÷²v±K«×¨ç¼Æ(PDF) ¡A¬Ò¬°°ª´µ¨ç¼Æ¡AºÙv(t)¬°Gaussian Processes¡C
¨ ¦³¤U¦C©Ê½è
¤ ¥H´Á±æÈ»P¦Û¬ÛÃö¨ç¼Æ§¹¥þ´yzÀH¾÷¹Lµ{¡C
¤ Yº¡¨¬¼s¸qÀRºA¹Lµ{¡A«h¬°ergodic¡C
¤ Y
¸g½u©Ê¹Bºâ«á²£¥Í¥t¤@Gaussian Processes
¨ ¥ÑÀH¾÷¹Lµ{²£¥ÍÀH¾÷°T¸¹(Random signals) ¡A±µ¤U¨Ó¥HÀRºA°T¸¹·½(©Îergodic source)¬°¥Dn¤ÀªR¹ï¶H¡C
¨ ¬ã°Q¸gfiltering ©Î¨ä¥L¹Bºâ«á¤§ÀH¾÷°T¸¹©Ê½è
¤ ¿é¤J»P¿é¥X°T¸¹¤§¬ÛÃö¨ç¼Æ¡Aauto-correlation¡Across-correlation
¤ ¥\²vÀWÃÐ(power spectrum) ¡AÀ³¥ÎWiener-Kinchine theorem¨Ó©w¸q»P¤ÀªR¡C
¨ ®Ú¾ÚWiener-Kinchine theorem¡AÀRºA°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ»P¥\²vÀWÃÐ(Power spectrum) ¡C
¤ ¥§¡¥\²v
¤ Y°T¸¹¬°¹ê¼Æ¦Û¬ÛÃö¨ç¼Æ¬°even-symmetry
¨ ÀRºAÀH¾÷°T¸¹¤§
¤ ¦Û¬ÛÃö¨ç¼Æfourier transform¬°¨ä¥\²vÀWÃÐ(Power spectrum)
¤ ¥\²vÀWÃÐ(Power spectrum) ¤§¤Ïfourier transform¬°¦Û¬ÛÃö¨ç¼Æ¡C
¨ Finite-duration or truncated random signal
¨ ¦]¬°¯à¶q¦³©Ò¥H¦s¦bfourier transform
¨ ºÙ
¤ Y±NTµø¬°µL¤j¡A¥i©w¸qÀH¾÷°T¸¹¤§¥\²vÀWÃÐ
¨ ¦p¤U¹Ï(a) ¬°ÀH¾÷¤§¹q³ø°T¸¹ªi§Î¡A¨D°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ¡B¥§¡¥\²v¡B¥\²v±K«×ÀWÃÐ
¨ ¸Ñ¡G
¤ ¦Û¬ÛÃö¨ç¼Æ
¤ ¥§¡¥\²v
¤ ¥\²v±K«×ÀWÃÐ
Random telegraph wave (a) Sample function; (b) Autocorrelation; (c) Power spectrum
¨ (a) Sample function
¨ (b) Autocorrelation
¨ (c) Power spectrum
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¤ Y¦U°T¸¹²£¥Í·½¬°¤¬¬Û¿W¥ß¡A½u©Ê¦X¦¨¤§°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ¡B¥\²vÀWÃСB¥§¡¥\²v¨ã¦³«Å|©Ê½è¡C
¤ Y¥Ñ¿W¥ß°T¸¹·½©Ò²£¥Í¡A¤@¯ë¬°«D¦P½Õ°T¸¹(incoherent signal)
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom
telegraph Wave¡B½d¨Ò¡GHilbert Transform of a random signal |
¤ ¬°¤@®ÉÅܹBºâ¡A¦ý¦b¬Y¨Ç±¡ªp¤U¡A½ÕÅܫᤧ°T¸¹¥i¥Hµø¬°ÀRºAÀH¾÷¹Lµ{¡G¨â°T¸¹¿W¥ßÁpÀRºA(independence and joint stationary)
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ ¦³¨ÇÀH¾÷°T¸¹¥iµø¬°¥Ñ¨ä¥LÀH¾÷°T¸¹¤§½u©Ê²Õ¦X¡C¦p¡G°²³]¦³¨â°T¸¹(v(t),w(t))¦³Áp¦XÀRºA¤§©Ê½è
¤ ¥O
¤ «h
¨ ¥\²vÀWÃЬ°
¨ ¥Ñ¦¹¥i¥H©w¸q¥æ¤¬¥\²vÀWÃбK«×(cross-spectral density)
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ ¥æ¤¬¥\²vÀWÃбK«×
¤ ·í¨â°T¸¹¬°¤£¬ÛÃö¥B´Á±æÈ¬°0¡A
¤ «h±o¨ì¦Û¬ÛÃö¨ç¼Æ¡B¥\²vÀWÃСB¥§¡¥\²v¤§«Å|©Ê½è
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom
telegraph Wave¡B½d¨Ò¡GHilbert Transform of a random signal |
¨ º¡¨¬
¤ ºÙ¦¹¨â°T¸¹(v(t),w(t))¬°«D¦P½Õ(incoherent)
¨ °T¸¹Y¥Ñ¿W¥ß°T¸¹·½©Ò²£¥Í¡A¤@¯ë¬°«D¦P½Õ°T¸¹(incoherent signal) ¡A¥B¥\²v¤§«Å|©Ê¬O±`¨£¤§¤@¯ëª«²z²{¶H¡C
¤ ¨Ò¦p¡G¨âµ¼Ö®a¦X°Û(independence source)®É¡A¦]¨S¦³§¹¾ã¤§¦P¨B(incoherent)¡A©Ò¥HÁ`¥\²v¬°Ó§O¥\²v¬Û¥[¡C
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ ½ÕÅܰT¸¹¥iªí¥Ü
¤ °²³]v(t)¬OÀRºAÀH¾÷¹Lµ{¡A£X¬°ÀH¾÷ÅܼÆ(§¡¤Ã¤À§G0~2£k)
¤ ÁöµM½ÕÅܬO¤@®ÉÅܱ¡§Î¡A¦ý¦¹Ãþ«¬¤§°T¸¹³Ì«á¾É¥X
¨ ½ÕÅÜ¥iµø¬°¼¿n¹Bºâ
¤ Y¨â°T¸¹¿W¥ßÁp¦XÀRºA
¤ ¦]¬°°T¸¹»P¸üªi¬O¥i°²³]¬°¿W¥ßÁp¦XÀRºA¡A©Ò¥H
¤ ¦]¬°¸üªi¬°cos,¡A©Ò¥H
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ Âoªi¹Bºâ¡A¦p¤U¹Ï
¨ Âoªi¹Bºâ¥iµø¬°¤@¨t²ÎºP¿n¹Bºâ(convolution)
¤ Âoªi«e¡B«á°T¸¹¤§¤¬¬ÛÃö¨ç¼Æ¬°
¨ Âoªi«á°T¸¹¤§¦Û¬ÛÃö¨ç¼Æ¬°
¨ ¿é¥X¤§¥\²vÀWÃÐ
¨ ¤]¥i¨DÂoªi«á°T¸¹¦Û¬ÛÃö¨ç¼Æ»P¥§¡¥\²v
¿é¥X¤§¥§¡È
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ ¨ä¥L¤§½u©Ê¹Bºâ¤]¦³Ãþ¦ü¤§©Ê½è¡A¿é¥X¤§¥\²vÀWÃСB¿é¥X¤§¥§¡È
¨ ¦p·L¤À
¨ ¿n¤À
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ ±N¤U¦CÀH¾÷°T¸¹¿é¤J²z·Q±a³qÂoªi¾¹¡A
¨ ¨D¿é¥X°T¸¹¤§ÀWÃСH»P¥§¡¥\²v
¸Ñ¡G
¨ ¿é¥X°T¸¹¤§ÀWÃÐ
¨ »P¥§¡¥\²v
¬ÛÃö¸ê®Æ |
¹ê»Ú°T¸¹¡B½ÕÅÜ¡B°T¸¹½u©Ê¦X¦¨¡B«Å|©Ê½è¡B«D¦P½Õ°T¸¹¡B¤ÀªR½d¨Ò¡G½ÕÅÜ¡BÂoªi«á¤§ÀH¾÷°T¸¹¡B½u©Ê¹Bºâ«á¤§ÀH¾÷°T¸¹¡B½d¨Ò¡GRandom telegraph Wave¡B½d¨Ò¡GHilbert
Transform of a random signal |
¨ Hilbert Transform©w¸q¦p¤U¡G
¨ ¨D¥ô¦óÀH¾÷°T¸¹Hilbert Transform¤§
¤ ÀWÃЪí¥Ü¡H
¤ ¦Û¬ÛÃö¨ç¼Æªí¥Ü¡H
¸Ñ¡GHilbert Transform of a random signal
¨ ¦]¬°
¨ ¥B
¨ ©Ò¥H
¨ Âà´««e«á°T¸¹¤§¤¬¬ÛÃö¬°
¨ ¤£n¤§¹q°T¸¹¨Ó·½«Ü¦h¡A¦³¤H¬°¤zÂZ(interference)©Î¦ÛµM²£¥Í¤§Âø°T¡C
¤ ¤H¬°¤zÂZ(interference) ¡G¥i¯à¥Ñ¨ä¥L³q°T¨t²Î¡BÂI¤õ¨t²Î¡B¥æ¬yµ(AC hum) ¡B¡Kµ¥µ¥¡C
¤ ¦ÛµM²£¥Í¤§Âø°T¡G¤j®ð¼h¤§¹qÂ÷®ÄÀ³¡B¤Ó¶§´T®g¡B¥´¹p¡B¹q¤lÀH¾÷¼ö¹B°Ê´T®g¡C
¤ §¹¥þµLªkÁ×§K¤§Âø°T¬°¼öÂø°T(thermal noise) ¡A¬O¥Ñ¹q¤l¦b¦UÃþ´CÅ餤¦]¼ö¹B°Ê©Ò²£¥Í¤§¹qÂø°T¸¹¡C
¤
¼öÂø°T¥u¯à³z¹LÂoªi°§C!!!µLªk®ø°£¡C
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¡§Thermal noise is the noise produced by the random motion of charged particles (usually electrons) in conducting media.¡¨
¨ ®Ú¾Úkinetic theory¡A¼öÂø°T¤§¥\²v»P·Å«×¦³Ãö¡A¥B¾÷²v¤À§G¨ç¼Æ¬°°ª´µ¤À§G¡Azero mean¡Avariance ¡G
¤ ¨ä¤¤
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ ¥\²v±K«×ÀWÃÐ
¤ ÀW²v«Ü¤p®É¡A¥i¤@¶¥ªñ¦ü¬°
¤ ¼Ð·Ç·Å«×
¤ ©Ò¥H¦b¤pÀW±a½d³ò¥iªñ¦ü¬°
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ Y±N¼öÂø°T·½¥H
¤ thevenin µ¥®Ä¹q¸ô ¡A±µ¤Wt¸ü®É
¤ norton µ¥®Ä¹q¸ô¡A±µ¤Wt¸ü®É
¨ ®Ú¾Ú³Ì¤j¥\²v¶Ç¿é©w²z
¤ Rload=R®É¦³³Ì¤j¥\²v
¤ ±o
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ °£¤F¹qªý¤§¼öÂø°T¥~¡A©|¦³³\¦hÂø°T·½¦³·¥¼e¤§ÀWÃÐ(¥B¬°¥©Z¡G©Ò¦³ÀW²v¤§±K«×´X¥G¤@¼Ë) ¡A¥B°ª´µ¤À§G¡A¦]¦¹§Ú̲ºÙ¬°¥ÕÂø°T(white noise¡A¨ú¦W¦p¥Õ¥ú) ¡C
¤ ¥\²v±K«×ÀWÃÐ
¤ ¦Û¬ÛÃö¨ç¼Æ
¤ Âø°T¹qÀ£, Âø°T¹q¬y
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ YÂø°T¨Ã«D¥Ñ¹q¤l¼ö¹B°Ê²£¥Í¡A¬°¤ÀªR¤è«K¤]¥i©w¸qÂø°T·Å«×(µ¥®Ä©ó¹qªý¼öÂø°T¤§·Å«×) ¡C
¤ ©w¸q
¤ ¹ïÀ³¤§¼öÂø°T
¤ ¦]¦¹Âø°T·Å«×¤£¨£±o¬O¬°¹ê»Ú¤W¤§·Å«×¡A
¤ ¨Ò¦pY¦³¤@³]³Æ¤§Âø°T·Å«×¬°
³]³Æ¨Ã¤£¤@¦³¦p¦¹¤§°ª·Å
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ Y¼öÂø°T¥[¦Ü¤@LTI¨t²Î¡A«h¨t²Î¿é¥XÂø°T¬°
¨ Y¸g¹L¤@²z·Q§C³qÂoªi¾¹¡A¿é¥XÂø°T
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ ¦p¹Ï¤§RC¹q¸ô¡A°²³]¹qªý·Å«×¬°T¡A¨D¦¹RC¹q¸ô©Ò¿é¥X¤§Âø°T¬°¡H
¨ ¸Ñªk¡G
¤ ¥i¥H¤Æ¬°µ¥®Ä¹Ï
¤ ¦ApºâRCÂoªi¾¹¤§Âಾ¨ç¼Æ
¤ À³¥ÎÂoªi¤§ÀWÃФ½¦¡pºâ¿é¥X¥\²v
¸Ñ¡G RC¹q¸ô¼öÂø°T
¨ ¦p¥k¹Ïµ¥®Ä
¨ RC¤§Âಾ¨ç¼Æ
¨ Âoªi«á¿é¥X
¬ÛÃö¸ê®Æ |
Thermal Noise¡BThermal Noise and Available power¡B¥i¥Î¥\²v¡B¥Õ¦âÂø°T¡BÂø°T·Å«×¡B¹LÂo«áÂø°T¡B½d¨Ò¡GRC¹q¸ô¼öÂø°T¡BÂø°Tµ¥®ÄÀW¼e |
¨ ¥§¡Âø°T¥\²v(average noise bandwidth)
¨ ¥H©Ò¦³Âø°T¬Ûµ¥¤§·§©À¡A©w¸qÂø°Tµ¥®ÄÀW¼e(Noise Equivalent Bandwidth)
¤ Á`Âø°T
¨ Âø°Tµ¥®ÄÀW¼e¤§¹Ï¥Ü
¨ ¥HRC¹q¸ô¬°¨Ò¡AÂø°Tµ¥®ÄÀW¼e
¨ ¥§¡Âø°T¥\²v¡Aª`·N»PRµLÃö¡C
¨ Âø°Tµ¥®ÄÀW¼e¡G
¨ ®¶´TÅTÀ³¡GÀ³¥Î¥ÕÂø°T¨D¨t²Î¤§®¶´TÅTÀ³¡A¥H¥ÕÂø°T¥[¦Ü°T¸¹¿é¤JºÝ¡A¶q´ú¿é¥XÅTÀ³¡C
¨ ¯ß½ÄÅTÀ³¡GÀ³¥Î¥ÕÂø°T¨D¨t²Î¤§¯ß½ÄÅTÀ³¡C
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ À³¥Î¥ÕÂø°T¨D¨t²Î¤§®¶´TÅTÀ³¡A¥H¥ÕÂø°T¥[¦Ü°T¸¹¿é¤JºÝ¡A¶q´ú¿é¥XÅTÀ³¡C
¤ ±N¥ÕÂø°T¿é¤J¨t²Î¡A
¤ ¨Ã¥H¸ÑªR¤§¶¡®æÀW±a±½´y¡A¨Ã¶q´úrms(¥\²v)¡C
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ À³¥Î¥ÕÂø°T¨D¨t²Î¤§¯ß½ÄÅTÀ³¡C
¤ ¿é¤J¥ÕÂø°T¦Ü¨t²Î
¤ ¨Ã±½ºËDelay¤§®É¶¡¡A±N¦U®É¶¡©Ò¹ïÀ³¤§¥§¡¥\²v°O¤U¡A¬°¸Ó®É¶¡¤§¯ß½ÄÅTÀ³¡C
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ °òÀW±a³q°T(baseband communication ) ¡G¥u¤ÀªR°òÀW±a°T¸¹¦b½u©Ê¨t²Î¤¤¶Ç¿é»P³B²z¡A¤£¦Ò¼{¸üªi½ÕÅÜ(carrier modulation)¡C
¡§Noise often adds to the information-bearing signal at various points between the source and the destination.¡¨
¨ ¥[¦¨©ÊÂø°T(Additive noise) ¡G«üÂø°T¥[¤J¨t²Î¤§¤è¦¡¬°½u©Ê¥[¦¨¹Bºâ(°T¸¹¬Û¥[) ¡C
¤ ³z¹L¾A·í¤§Âà´«¡A¥i¥H±N¸üªi½ÕÅܵ¥±a³q²{¶HÂà´«¦Ü°òÀW±a¡C
¤ ¤ÀªR¤Wz¨t²Î¯S©Ê¡A¥iÁA¸Ñ¤j³¡¥÷³q°T¨t²Î¤§°ÝÃD¡C
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ Y°T¸¹¬°¥[¦¨©ÊÂø°T(Additive noise)¥iªí¥Ü¬°
¨ °T¸¹»PÂø°T¼Ò«¬¤è¶ô¹Ï¦p¤U
¨ ¥Ñergodic°T¸¹·½²£¥Í¤§Âø°T¡Amean=0,
power spectral
density
¨ ¦]°T¸¹»PÂø°T¤£¬ÛÃö¡AÁ`°T¸¹¥\²v¬°
¤ ¨ä¤¤
¨ ·íÂø°T¤§¾÷²v¤À§G¬°°ª´µ¤À§G¡AºÙ¥[¦¨©Ê°ª´µ¥ÕÂø°T(additive white gaussian noise¡AAWGN)
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ °T¸¹Âø°T¤ñ¡G°T¸¹¥\²v»PÂø°T¥\²v¤§¤ñÈ¡Aªí¥Ü¦p¤U¡G
¤ ©Ò¥H
¤ ¨ä¤¤Âø°TY¬°¼öÂø°T¡A«h¥\²v
¬ÛÃö¸ê®Æ |
¶q´úÀ³¥Î¡GAmplitude Response¡B¶q´úÀ³¥Î¡GImpulse
Response¡BÂø°TÀô¹Ò¤¤°òÀW±a°T¸¹¶Ç¿é¡BAdditive Noise¡B°T¸¹Âø°T¤ñ¡BAWGN¤§Âø°T·Å«× |
¨ Âø°T¥\²v
¤ ¨ä¤¤Âø°T±K«×
¤ ¦b¥Õ¦âÂø°T(white noise)±¡ªp¡AÂø°T±K«×¥i¥H¥HÂø°T·Å«×ªí¥Ü
¤ ¨ä¤¤
¨ ¤U¹Ï¬°°ò¥»Ãþ¤ñ°òÀW±a¶Ç¿é¨t²Î¡C
¤ Y°T¸¹ÀW¼e¬°W
¤ ³q¹D(channel)¤§ÀW¼e>W¡AµL¥¢¯u³q¹D«ü³q¹D¿é¥X
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¨ ¥\²v©w¸q
¤ µo®g¥\²v
¤ ±µ¦¬¥\²v
¤ ¥Øªº¦a¥\²v
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¤ °T¸¹ÀW¼eW¡A²z·QÂoªi¡AÀW¼e
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¤ dBªí¥Ü
¨ Âø°T¥[¤J«e¤§¤ÀªR
¤ ©Ò¥H
¨ ¶Ç¿é³q¹D¤ÀªR¡AY
¤ ¨Ï¥Î¤¤Ä~¾¹(repeater)
¤ µL¤¤Ä~¾¹(repeater)¡A¥u¤@¬q¸ô®|·l¥¢ L
¤ ¦³M¤¤Ä~¾¹(repeater)¡A M¬q¸ô®|·l¥¢ L1=L/M¡A°²³]¨C¤¤Ä~¾¹¤§¼W¯q³]©wµ¥©ó¸Ó¬q¤§·l¥¢¡A«h
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¨ cable system¦³³q¹D°I´î
¤ Âø°T·Å«×
¤ Yn¶Ç¿é°ª¶Ç¯uµÅT°T¸¹
¨D©Ò»Ý¤§¶Ç¿é¥\²v¡H
¸Ñ¡G
¨ ©Ò¥H±µ¦¬ºÝ¤§¥\²v
¨ ¶Ç¿é¥\²v40000W(¤Ó¤j)
½d¨Ò¡Gcable system(§ï¶i)
¨ Y¦b¶Ç¿é¸ô®|¤¤¶¡¥[¤J¤¤Ä~¾¹(repeater)
¨ «h°I´î
¨ ¨t²Î§ïµ½¦]¤l
¨ ©Ò¥H¶Ç¿é¥\²v8mW,¬°¹ê»Ú¥iÀ³¥Î¤§¥\²vÈ
¬ÛÃö¸ê®Æ |
Ãþ¤ñ°òÀW±a¶Ç¿é¡B§C³qÂoªi¾¹¡B±µ¦¬¾÷¤§Âø°T¤ÀªR¡B¨å«¬¤§¶Ç¿é¥\²v»Ý¨D¡B½d¨Ò¡Gcable system¡BÂø°TÀô¹Ò¤¤°òÀW±a¯ßªi¶Ç¿é |
¨ Pulse measurement in noise (a) Model
¨ (b) Waveform
¨ Baseband Pulse±µ¦¬¡A³æ¤@¨ú¼Ë¼Ò¦¡¦p¤U
¤ ¨ä¤¤
¤ »~®t¤§Åܲ§¼Æ¬°
¨ °²³]
¤ ¨ä¤¤
¤ «hÅܲ§¼Æ(Âø°T¯à¶q)¤U¬°
¨ ¶q´ú¯ß½Ä¨ì¹F®É¶¡(arrival time or duration)¡A¤@¯ë¥H±µ¦¬°T¸¹·Ç¦ì¹F°T¸¹¬Y©T©wÈ(¦pA/2)¡C
¤ ¦¹¶q´ú¤§Âø°TÂZ°Ê(noise perturbation n(tb))
¤ Time position error £`
¨ Time position error£`
¤ ¥N¤J
¤ ±o
¤ Y¶Ç¿éÀW¼eBT
¬ÛÃö³æ¤¸ |
¾Ç²ß¥Ø¼Ð¡BÀH¾÷¹Lµ{¡B«Å|©Ê½è»P½ÕÅÜ¡BÂø°T¡B¥ÕÂø°T¶q´ú¨t²Î¡BÃþ¤ñ°òÀW±a¶Ç¿é¡BPulse detection and matched filters |
|
¬ÛÃö¸ê®Æ |
|
¨ ¯ß½Ä°»´ú¤§¤è¶ô¹Ï¼Ò«¬¦p¤U¡G
¬ÛÃö¸ê®Æ |
|
¨ ±µ¦¬°T¸¹
¤ ÀWÃÐ
¨ ¯ß½Ä¤§¯à¶q¬°
¨ ±µ¦¬¤§¯ß½Ä®¶´T
¨ ¨üÂø°T¤zÂZ¡A©Ò¥H
¨ ³Ì¤j¤§SNR
¨ ¬Û¹ïÀ³¤§³Ì¨ÎÂoªi¾¹¬°
¤ YÂø°T¬°¥ÕÂø°T
¬ÛÃö¸ê®Æ |
|
¨ ·íÂø°T¬°¥ÕÂø°T¡A¨Ï°»´ú¾¹¦³³Ì¤jSNR¤§Âoªi¾¹¡AºÙ¦¹¯ß½Ä°T¸¹¤§¤Ç°tÂoªi¾¹