

理論分析(MLMI-複層網格法及複層積分法)
1. Reynolds equation :
$\frac{\partial}{\partial X} \left\{ \frac{\overline{\rho}H^3}{\overline{\eta}_f} \frac{\partial P}{\partial X} \right\} + \frac{\partial}{\partial Y} \left\{ \frac{\overline{\rho}H^3}{\overline{\eta}_f} \frac{\partial P}{\partial Y} \right\} = \lambda \frac{\partial}{\partial X} \left\{ \overline{\rho}H \right\} , \lambda = \frac{12\eta_0 \overline{u}R_x^2}{b^3 p_h}$
2. Film thickness equation (elastic deformation) :
$H = H_{00} + \frac{X^2 + Y^2}{2} + \frac{2}{\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{P(X', Y') dX' dY'}{\left[(X - X')^2 + (Y - Y')^2 \right]^{1/2}}$
3. Force balance equation :
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(X, Y) dX dY = \frac{2\pi}{3}$
4. The density-pressure relationship equation:
$\rho = \rho_0 \left(1 + \frac{0.6 \times 10^{-9} p}{1 + 1.7 \times 10^{-9} p}\right)$
5. The viscosity-pressure relationship equation:
$\eta = \eta_0 \exp\{(9.67 + \ln\eta_0)[-1 + (1 + 5.1 \times 10^{-9} p)^{z'}]\}$
Boundary conditions :
$P = 0$, $X = X_{in}$; $-1.8 \le Y \le 1.8$
$P = 0$, $Y = \pm 1.8$; $X_{in} \le X \le X_{end} = \varsigma(Y)$
$P = \frac{dP}{dX} = 0 , X = \varsigma(Y) -1.8 \le Y \le 1.8$

理論分析(以逆解法求壓力)	
在定負荷狀態下,將油膜厚度方程式及負荷平衡方程式以知	陣表示:
H=DP(Direct Inverse)	(2-1) DI
可將待求的壓力分佈值表示為一適當函數,因此可將P矩陣;	表示為:
P=FA	(2-5)
將(2-5)式代入(2-1)式中可寫為:	
H=DFA	(2-6) F A
實際的油膜厚度量測值與估測的油膜厚度值是有差異的,比	較量測值
H ^{measured} 與估測值H ^{estimated} 間之差異,其誤差函數表為:	
$g = (\mathbf{H}^{\text{estimated}} - \mathbf{H}^{\text{measured}})^{\mathrm{T}} (\mathbf{H}^{\text{estimated}} - \mathbf{H}^{\text{measured}})$	(2-7)
將 g 對 A 作一次微分,可得極小值之狀態。	
$\frac{\partial g}{\partial x} = 0$	(2-8)
∂A	()
即可得	
$\mathbf{A} = \left[(\mathbf{D}\mathbf{F})^{\mathrm{T}} (\mathbf{D}\mathbf{F}) \right]^{-1} (\mathbf{D}\mathbf{F})^{\mathrm{T}} \mathbf{H}$	(2-9)
	5

理論分析(潤滑油黏度的計算) I.A.	
潤滑劑密度與壓力的關係式(Dowson 和 Higginson):	
$\overline{\rho} = \frac{\rho}{\rho_0} = 1 + \frac{0.6 \times 10^{-9} p}{1 + 1.7 \times 10^{-9} p}$	(2-2)
潤滑劑黏度與壓力的關係式(Roelands):	
$\overline{\eta} = \exp\{(9.67 + \ln\eta_0)[-1 + (1 + 5.1 \times 10^{-9} p)^z]\}$	(2-3)
將 P、H 代入雷諾方程式中加以整理可寫成下式:	
$\frac{\partial \overline{\eta}}{\partial P} = c_1 \overline{\eta} + c_2 \overline{\eta}^2 (\xi = \partial \overline{\eta} / \partial P - c_1 \overline{\eta} - c_2 \overline{\eta}^2)$	(2-4)
最小均方根誤差法採用下列式子可達到最小化:	
$\Lambda = \sum_{i=1}^{n} \xi_i^2$	(2-10)
將(2-3)式代入(2-10)式, Roelands關係式的壓力-黏度指數的	的最佳值即
可由下式決定: $\frac{\partial \Lambda}{\partial z} = 0$ Inverse Approach	(2-11)

I.A. in l	EHL (of circ	cular o	contac	<u>ets (2)</u>		
在不同選取範圍、量測誤差、負荷的條件下使用逆解法求得之z值							
	Pressure-v	viscosity inc	dex (Invers	e approach))		
Load	Load $W = 1.0 \times 10^{-6}$				$W = 1.93 \times 10^{-7}$		
error X,Y range	σ=0.0	σ=0.005	σ=0.01	σ=0.0	σ=0.002	σ=0.005	
-1.0 < X < 0.4 Y = 0.0	0.475	0.507	0.512	0.482	0.486	0.498	
$\sqrt{X^2 + Y^2} < 0.2$	0.499	0.518	0.523	0.492	0.498	0.515	
$\sqrt{X^2 + Y^2} < 0.4$	0.456	0.425	0.431	0.463	0.450	0.435	
			σ=0).04 Erro	r= 4.99%	, 6nm	

在不同	在不同選取範圍、量測誤差、時間點的條件下使用逆解法求得之Z值							
	Pressure-viscosity index (Inverse approach)							
t-step		<i>∆t</i> =0.03 s			<i>∆t</i> =0.06 s			
X-region	σ=0.0	σ=0.005	σ=0.01	σ=0.0	σ=0.005	σ=0.01		
0.05 < X < 0.9	0.4882	0.4959	0.5015	0.5037	0.5159	0.5289		
0.05 < X < 0.5	0.4876	0.4952	0.5002	0.5026	0.5151	0.5272		
0.05 < X < 0.2	0.4866	0.4946	0.4996	0.5012	0.5147	0.5268		

理論分析(TFL- Thin Film Lubrication)	
1. Classical EHL	
2. EHL Surface Force Model	
傳統彈液動潤滑點接觸雷諾方程式如下所示:	
$\frac{\partial}{\partial x} \left\{ \frac{\rho h^3}{\eta} \frac{\partial p_{vis}}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ \frac{\rho h^3}{\eta} \frac{\partial p_{vis}}{\partial y} \right\} = 12 \frac{\partial}{\partial x} \left\{ \rho \overline{u} h \right\}$	(6-12)
凡得瓦力隨膜厚變化的關係式為: <u>Ref</u> Jang and Tichy	
$p_{vdw} = -\frac{A}{6\pi h^3} , A \cong 10^{-19} J$	(6-13)
結構力隨膜厚變化的關係式為:	
$P_{solv} = -c \exp(-h/a)\cos(2\pi h/a)$, a = lnm, c = 172MPa 因此在接觸區內薄膜所受的總壓力為:	(6-14)
<i>p</i> = <i>p_{vis}</i> + <i>p_{solv}</i> + <i>p_{vdw} 點接觸彈液動薄膜的厚度方程式為:</i>	(6-15)
$H = H_{00} + \frac{X^{2} + Y^{2}}{2} + \frac{2}{\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{P(X', Y') dX' dY'}{\left[(X - X')^{2} + (Y - Y')^{2} \right]^{1/2}}$	(6-9)
在點接觸之狀態, 垂直負荷容量為:	
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(X,Y) dX dY = \frac{2\pi}{3} \qquad \qquad \eta \checkmark \rho$	(6-10)

$$\begin{aligned}
\mathbf{Velocity Distribution} \\
\mathcal{U}_{1} &= \frac{1}{2}A\frac{\eta^{*}}{\overline{\eta}_{f}}H^{2}\frac{\partial P}{\partial X}Z(Z-1) + U_{b} \\
\mathcal{U}_{2} &= \frac{1}{2}\frac{A}{\overline{\eta}_{f}}\frac{\partial P}{\partial X}\left[H^{2}Z(Z-1) + \eta^{*}\overline{\delta}(\overline{\delta} - H)(1 - \frac{1}{\eta^{*}})\right] + U_{b} \\
\mathcal{U}_{3} &= \frac{1}{2}A\frac{\eta^{*}}{\overline{\eta}_{f}}H^{2}\frac{\partial P}{\partial X}Z(Z-1) + U_{a} \\
\mathcal{V}_{1} &= \frac{1}{2}A\frac{\eta^{*}}{\overline{\eta}_{f}}H^{2}\frac{\partial P}{\partial Y}Z(Z-1) \\
\mathcal{V}_{2} &= \frac{1}{2}\frac{A}{\overline{\eta}_{f}}\frac{\partial P}{\partial Y}\left[H^{2}Z(Z-1) + \eta^{*}\overline{\delta}(\overline{\delta} - H)(1 - \frac{1}{\eta^{*}})\right] \\
\mathcal{V}_{3} &= \frac{1}{2}A\frac{\eta^{*}}{\overline{\eta}_{f}}H^{2}\frac{\partial P}{\partial Y}Z(Z-1)
\end{aligned}$$
(6-8)

	Thin Film Lubrication (6)						
	使用彈液動潤滑逆解注 Actual value	去求得之 z z 0.8195	值並與真實	值比較			
	Inverse approach	0.9093					
La Jan La Jan	吏用彈液動薄膜潤滑 逆解	法求得之 <i>z</i> z	Error= 、η [*] 、δ值並 η*	10.96% 奥真實值比較 δ(nm)			
灰階干涉條紋圖及油膜分佈輪廓圖	Actual value	0.8195	0.1429-0.2	0.74-1.45			
	Inverse approach	0.8629	0.1522	1.1			
	Error= 5.30%						
逆解法求出接觸區的壓力分佈值							

Ι.	GOV	ERNING EQUAT	IONS OF PISTON RING LUBRICATIO	N
			The hydrodynamic lubrication, the steady state one-dimensional Reynol	lds equation is
			$\frac{\partial}{\partial x}\left(\frac{\rho h^3}{\eta}\frac{\partial p}{\partial x}\right) = 6u_b \frac{\partial(\rho h)}{\partial x}$	(1)
1]	Į.	where u_b represents the piston velocity. Eq. (1) can be integrated as:	
	$p_b + p_a$		$\frac{dp}{dx} = 6\eta u_b \frac{h - h_m}{h^3}$	(2)
	$h_0 + s_h$		where h_m is the film thickness at maximum pressure, i.e. dp	dx = 0. The
		→	dimensionless form of Eq. (2) is	
		$\frac{dP}{dX} = 6(\frac{H-H_m}{H^3})$	(3)	
x /			The boundary conditions for Eq. (3) are:	
		$P = P_b + P_a, \text{ at } X = X_{in} (= 0)$	(4a)	
		$P = P_b$, at $X = X_{end} (= 1)$	(4b)	
		The load-carrying capacity of the oil film per unit length is:		
		$w = \int_0^l p dx$	(5)	
		·	The pressure acting on the piston ring in the radial direction is a	assumed to be
			composed of the pressure at the inner side of the ring and the pist	on ring elastic
			pressure. Therefore, the dimensionless load balance equation for the	e piston ring is
			given as:	
			$W = \int_0^1 P dX = P_g + P_e$	(6)

Optimum design of piston ring shape using inverse method (1)

$$H_{k} = (X_{k} - 1) \sum_{j=1}^{m+1} C_{j} X_{k}^{j} - X_{k} + (H_{0} + 1)$$
(7)

$$P_{k} = (X_{k} - 1)\sum_{i=1}^{n+1} B_{i}X_{k}^{i} - X_{k}P_{a} + (P_{b} + P_{a})$$
(8)

Substituting Eq. (8) into Eq. (6), the force balance equation becomes

$$W = (P_b + \frac{1}{2}P_a) - \sum_{i=1}^{n+1} \frac{1}{(i+1)(i+2)} B_i$$
(9)

Substituting Eqs. (7) and (8) into Eq. (3), the governing equation becomes

$$f_{k} = \left\{ -P_{a} + \sum_{i=1}^{n+1} [X_{k}^{(i-1)}(2X_{k}-1) + (i-1)X_{k}^{(i-2)}(X_{k}^{2}-X_{k})]B_{i} \right\}$$
$$[(X_{k}-1)\sum_{j=1}^{m+1} C_{j}X_{k}^{j} - X_{k} + (H_{0}+1)]^{3} - 6\left\{ [(X_{k}-1)\sum_{j=1}^{m+1} C_{j}X_{k}^{j} - X_{k} + (H_{0}+1)] - H_{m} \right\} (10)$$

